

108 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

Improving and Understandability of Programming
using RAPTOR

S.Phani Kumar1 | K.Narendra Kumar2 | P.V.V.S.Eswar Rao3

1,3Assistant Professor, Department of Information Technology, Sasi Institute of Technology and Engineering,

Tadepallegudem, Andhra Pradesh, India.
2Associate Professor, Department of CSE, Chalapathi Institute of Engineering and Technology, Guntur, Andhra Pradesh,

India.

To Cite this Article
S.Phani Kumar, K.Narendra Kumar and P.V.V.S.Eswar Rao, “Improving and Understandability of Programming using
RAPTOR”, International Journal for Modern Trends in Science and Technology, Vol. 03, Special Issue 01, 2017, pp. 108-113.

When students are learning to develop algorithms, they very often spend more time dealing with issues of

syntax than solving the problem. Additionally, the textual nature of most programming environments works

against the learning style of the majority of students. RAPTOR is a flowchart-based programming

environment, designed specifically to help students visualize their algorithms and avoid syntactic baggage.

RAPTOR programs are created visually and executed visually by tracing the execution through the flowchart.

Required syntax is kept to a minimum. Students preferred using flowcharts to express their algorithms, and

were more successful creating algorithms using RAPTOR than using a traditional language or writing

flowcharts without RAPTOR.

KEYWORDS: J48, Naïve Bayes, Decision Tree, IBK, Data mining

Copyright © 2017 International Journal for Modern Trends in Science and Technology

All rights reserved.

I. INTRODUCTION

We previously observed that the use of a

particular programming language in an

introduction to computing course tends to “annoy

and distract attention from the core issue of

algorithmic problem solving.” In our experience, it

also distracts attention from the teaching of

algorithmic problem solving. Instructors spend

class time where they expect students to have the

most difficulty. Consequently, they often focus on

syntactic difficulties that they expect students will

encounter (e.g. the inappropriate use of “≤” instead

of “<=” in C-based languages, or the improper

placement of a semicolon).

Furthermore, we notice that most students are

visual learners and that instructors tend to present

information verbally. Studies [5,8] estimate that

between 75% and 83% of our students are visual

learners. Because of their highly textual rather

than visual nature, the use of either traditional

programming languages or pseudo-code provides a

counter-intuitive framework for expressing

algorithms to the majority of our students.

RAPTOR, the Rapid Algorithmic Prototyping Tool

for Ordered Reasoning, was designed specifically to

address the shortcomings of syntactic difficulties

and non-visual environments. RAPTOR allows

students to create algorithms by combining basic

flowchart symbols. Students can then run their

algorithms in the environment, either step-by-step

or in continuous play mode. The environment

visually displays the location of the currently

executing flowchart symbol, as well as the contents

of all variables. Also, RAPTOR provides a simple

graphics library, based on AdaGraph. Not only can

ABSTRACT

International Journal for Modern Trends in Science and Technology

Volume: 03, Special Issue No: 01, February 2017

ISSN: 2455-3778

http://www.ijmtst.com

http://www.ijmtst.com/

109 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

the students create algorithms visually, but also

the problems they solve can be visual.

We teach an “Introduction to Computing” course

that is required for all students. Previously, the

algorithms block of this course was taught in Ada

95 or MATLAB. This summer, we taught the same

course using RAPTOR. On the final exam, we

tracked three questions that required the students

to develop algorithms. The students were allowed

to use any method to express their algorithm (Ada,

MATLAB, flowcharts, etc.) Given this choice,

students preferred to use flowcharts, and those

taught using RAPTOR performed better.

RAPTOR is a visual programming development

environment based on flowcharts. A flowchart is a

collection of connected graphic symbols, where

each symbol represents a specific type of

instruction to be executed. The connections

between symbols determine the order in which

instructions are executed. These ideas will become

clearer as you use RAPTOR to solve problems.

II. RELATED WORK

We use RAPTOR in CS110 for several reasons.

 The RAPTOR development environment

minimizes the amount of syntax you must

learn to write correct program instructions.

 The RAPTOR development environment is

visual. RAPTOR programs are diagrams

(directed graphs) that can be executed one

symbol at a time. This will help you follow the

flow of instruction execution in RAPTOR

programs.

 RAPTOR is designed for ease of use. (You might

have to take our word for this, but other

programming development environments are

extremely complex.)

 RAPTOR error messages are designed to be

more readily understandable by beginning

programmers.

 Our goal is to teach you how to design and

execute algorithms. These objectives do not

require a heavy-weight commercial

programming language such as C++ or Java.

RAPTOR Program Structure

A RAPTOR program is a set of connected symbols

that represent actions to be performed. The arrows

that connect the symbols determine the order in

which the actions are performed. When executing a

RAPTOR program, you begin at the Start symbol

and follow the arrows to execute the program. A

RAPTOR program stops executing when the End

symbol is reached. The smallest RAPTOR program

(which does nothing) is depicted at the right. By

placing additional RAPTOR statements between

the Start and End symbols you can create

meaningful RAPTOR programs.

Introduction to RAPTOR Statements/Symbols

RAPTOR has six (6) basic symbols, where each

symbol represents a unique type of instruction.

The basic symbols are shown at the right. The top

four statement types, Assignment, Call, Input, and

Output, are explained in this reading, The bottom

two types, Selection and Loops, will be explained in

a future reading.

The typical computer program has three basic

components:

 INPUT – get the data values that are needed

to accomplish the task.

 PROCESSING – manipulate the data values

to accomplish the task.

 OUTPUT – display (or save) the values

which provide a solution to the task.

These three components have a direct correlation

to RAPTOR instructions as shown in the following

table.

Purpose Symbol Name Description

INPUT

input

statement

Allow the

user to enter

data. Each

data value is

stored in a

variable.

110 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

PROCESSIN

G

assignmen

t statement

Change the

value of a

variable

using some

type of

mathematica

l calculation.

PROCESSIN

G

procedure

call

Execute a

group of

instructions

defined in

the named

procedure. In

some cases

some of the

procedure

arguments

(i.e.,

variables)

will be

changed by

the

procedure's

instructions.

OUTPUT

output

statement

Display (or

save to a file)

the value of a

variable.

The common thread among these four

instructions is that they all do something to

variables! To understand how to develop

algorithms into working computer programs, you

must understand the concept of a variable. Please

study the next section carefully!

RAPTOR Variables

Variables are computer memory locations that

hold a data value. At any given time a variable can

only hold a single value. However, the value of a

variable can vary (change) as a program executes.

That's why we call them "variables"! As an example,

study the following table that traces the value of a

variable called X.

 Description Value of X
Program

When the program begins, no

variables exist. In RAPTOR,

variables are automatically

created when they are first

used in a statement.

Undefined

The first assignment

statement, X←32, assigns the

data value 32 to the variable

X.

32

The next assignment

statement, X←X+1, retrieves

the current value of X, 32,

adds 1 to it, and puts the

result, 33, in the variable X.

33

The next assignment

statement, X←X*2, retrieves

the current value of X, 33,

multiplies it by 2, and puts

the result, 66, in the variable

X.

66

Expressions

The expression (or computation) of an

assignment statement can be any simple or

complex equation that computes a single value. An

expression is a combination of values (either

constants or variables) and operators. Please

carefully study the following rules for constructing

valid expressions.

A computer can only perform one operation at a

time. When an expression is computed, the

operations of the equation are not executed from

left to right in the order that you typed them in.

Rather, the operations are performed based on a

predefined "order of precedence." The order that

operations are performed can make a radical

difference in the value that is computed. For

example, consider the following two examples:

 x ← (3+9)/3 x ← 3+(9/3)

In the first case, the variable x is assigned a value

of 4, whereas in the second case, the variable x is

assigned the value of 6. As you can see from these

examples, you can always explicitly control the

order in which operations are performed by

grouping values and operators in parenthesis. The

exact "order of precedence" is

1. compute all functions, then

2. compute anything in parentheses, then

3. compute exponentiation (^,**) i.e., raise

one number to a power, then

4. compute multiplications and divisions, left

to right, and finally

5. compute additions and subtractions, left to

right.

An operator or function directs the computer to

perform some computation on data. Operators are

placed between the data being operated on (e.g.

X/3) whereas functions use parentheses to

indicate the data they are operating on (e.g.

sqrt(4.7)). When executed, operators and

functions perform their computation and return

their result. The following lists summarize the

built-in operators and functions of RAPTOR.

basic math: +, -, *, /, ^, **, rem, mod,

sqrt, log, abs, ceiling, floor

trigonometry: sin, cos, tan, cot, arcsin,

arcos, arctan, arccot

miscellaneous: random, Length_of

The result of evaluating of an expression in an

assignment statement must be either a single

number or a single string of text. Most of your

expressions will compute numbers, but you can

also perform simple text manipulation by using a

plus sign (+) to join two or more strings of text into

111 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

a single string. You can also join numerical values

with strings to create a single string. The following

example assignment statements demonstrate

string manipulation.

Full_name ← "Joe " + "Alexander " + "Smith"

Answer ← "The average is " + (Total /

Number)

RAPTOR defines several symbols that represent

commonly used constants. You should use these

constant symbols when you need their

corresponding values in computations.

pi is defined to be 3.14159274101257.

e is defined to be 2.71828174591064

Procedure Call Statement/Symbol

A procedure is a named collection of

programming statements that accomplish a task.

Calling a procedure suspends execution of your

program, executes the instructions in the called

procedure, and then resumes executing your

program at the next statement. You need to know

two things to correctly use a procedure: 1) the

procedure's name and 2) the data values that the

procedure needs to do its work, which are called

arguments.

RAPTOR attempts to minimize the number of

procedure names you need to memorize by

displaying any procedure name that partially

matches what you type into the "Enter Call"

window. For example, after entering the single

letter "d," the lower portion of the window will list

all built-in procedures that start with the letter "d".

The list also reminds you of each procedure's

required arguments. In the example to the right,

the lower box is telling you that the "Draw_Line"

procedure needs 5 data values: the x and y

coordinates of the starting location of the line, (x1,

y1), the x and y coordinates of the ending location

of the line, (x2, y2), and the line's color. The order of

the argument values must match the arguments

defined by the procedure. For example,

Draw_Line(Blue, 3, 5, 100, 200) would generate an

error because the color of the line must be the last

argument value in the argument list.

When a procedure call is displayed in your

RAPTOR program you can see the procedure's

name and the argument values that will be sent to

the procedure when it is called. For example, when

the first procedure call on the right is executed it

will draw a red line from the point (1,1) to the point

(100,200). The second procedure call will also draw

a line, but since the arguments are variables, the

exact location of the line will not be known until the

program executes and all the argument variables

have a value.

RAPTOR defines too many built-in procedures to

describe them all here. You can find

documentation on all built-in procedures in

RAPTOR's help screens. In addition, your

instructor will introduce relevant procedures as we

tackle various problem solving tasks in the coming

lessons.

Output Statement/Symbol

In RAPTOR, an output statement displays a

value to the MasterConsole window when it is

executed. When you define an output statement,

the "Enter Output" dialog box asks you to specify

three things:

 Are you displaying text, or the results of an

expression (computation)?

 What is the text or expression to display?

 Should the output be terminated by a new

line character?

The example output statement on the right will

display the text, "The sales tax is" on the output

window and terminate the text with a new line.

Since the "End current line" is checked, any future

output will start on a new line below the displayed

text.

When you select the "Output Text" option, the

characters that you type into the edit box will be

displayed exactly as you typed them, including any

leading or trailing spaces. If you include quote

marks (") in the text, the quote marks will be

displayed exactly as you typed them.

When you select the "Output Expression" option,

the text you type into the edit box is treated as an

expression to be evaluated. When the output

statement is executed at run-time, the expression

is evaluated and the resulting single value that was

computed is displayed. An example output

statement that displays the results of an

expression is shown on the right.

112 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

You can display multiple values with a single

output statement by using the "Output

Expression" option and building a string of text

using the string plus (+) operator. When you build a

single string from two or more values, you must

distinguish the text from the values to be

calculated by enclosing any text in quote marks (").

In such cases, the quote marks are not displayed in

the output window. For example, the expression,

"Active Point = (" + x + "," + y + ")"

will display the following if x is 200 and y is 5:

 Active Point = (200,5)

Notice that the quote marks are not displayed on

the output device. The quote marks are used to

surround any text that is not part of an expression

to be evaluated.

Your instructor (or a homework assignment) will

often say “Display the results in a user-friendly

manner”. This means you should display some

explanatory text explaining any numbers that are

output to the MasterConsole window. An example

of "non-user-friendly output" and "user-friendly

output" is shown below.

Non-user-friendly
output

User-friendly output

Example output:

2.5678
Example output: Area =

2.5678 square inches

Comments in RAPTOR

The RAPTOR development environment, like

many other programming languages, allows

comments to be added to your program.

Comments are used to explain some aspect of a

program to a human reader, especially in places

where the program code is complex and hard to

understand. Comments mean nothing to the

computer and are not executed. However, if

comments are done well, they can make a program

much easier to understand for a human reader.

To add a comment to a statement, right-click

your mouse over the statement symbol and select

the "Comment" line before releasing the mouse

button. Then enter the comment text into the

"Enter Comment" dialog box, an example of which

is shown to the right. The resulting comment can

be moved in the RAPTOR window by dragging it,

but you typically do not need to move the default

location of a comment.

There are three general types of comments:

 Programmer header – documents who wrote

the program, when it was written, and a

general description of what the program does.

(Add to the "Start" symbol)

 Section description – mark major sections of

your program to make it easier for a

programmer to understand the overall

program structure.

 Logic description – explain non-standard logic.

Typically you should not comment every

statement in a program. An example program that

includes comments is shown below.

III. SIMPLE INTEREST FLOWCHART

IV. CONCLUSION

RAPTOR provides a simple environment for

students to experiment with developing algorithms.

Instructors can customize the environment and

facilitate more interesting exercises by adding to

the built-in procedures. Students, when given a

choice, overwhelming prefer to express their

algorithms visually using flowcharts. Even when

113 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

primarily taught a third generation programming

language, 95% of students chose instead to use a

flowchart on the final exam. The visual nature of

the flowcharts makes it easier for students to follow

the control flow in their programs, and to solve

problems more easily.

In a small experimental section, we found that

students using RAPTOR who entered the course

with a much lower incoming GPA outperformed

students with a higher incoming GPA using Ada or

MATLAB.

REFERENCES

[1] Martin C. Carlisle, Terry A. Wilson, Jeffrey W.

Humphries, Steven M. Hadfield RAPTOR:

Introducing Programming to Non-Majors with

Flowcharts

[2] Dr. Wayne Brown Introduction to Programming with

RAPTOR

[3] Cardellini, L. An Interview with Richard M. Felder.

Journal of Science Education 3(2), (2002), 62-65.

