

159 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

Language Expert-Rendering Unicode Text on ASCII
Editor for Indian Languages with Language Engine

C.Siva Jyothi1 | Samuel Chepuri2 | Jaga Jeevan Nandigama3

To Cite this Article
C.Siva Jyothi, Samuel Chepuri and Jaga Jeevan Nandigama, “Language Expert-Rendering Unicode Text on ASCII Editor for
Indian Languages with Language Engine”, International Journal for Modern Trends in Science and Technology, Vol. 03,
Special Issue 01, 2017, pp. 159-163.

In this paper we introduce the Language Engine which addresses rendering of Unicode characters on a

ascii supportable editor. Unicode characters are related to Indian regional languages based on their

character sets. With the application of Parse Engine, Language Engine and Rules Engine to identify the

language and convert from Unicode to Ascii in the target editor to resolve rendering problem, also improvises

file size reduction.

Parse Engine parses the input text character by character and checks if it is a new text or already parsed.

Inference Engine checks the Unicode character and identifies the language. Respective Language Engine is

loaded with rules. Rules Engine identifies the corresponding Ascii text to be placed in output. Here Rules

stored in Rules Engine are composed of XML formats and comes from manual entry. Input Unicode text can

come from any source of input. Finally, the output composed from the output file is pasted on the ascii editor

with the installation of the font renders the correct text.

KEYWORDS: Unicode, ASCII, Parse Engine, Language Engine, Rules Engine, Inference Engine

Copyright © 2017 International Journal for Modern Trends in Science and Technology

All rights reserved.

I. INTRODUCTION

Machine learning is a branch of artificial

intelligence science, the systems that can learn

data. Artificial Intelligence has significantly gained

grounds in our daily livelihood in this age of

information and technology. As with any field of

study, evolution takes place in terms of

breakthrough or developmental research leading to

advancement and friendly usability. Artificial

Intelligence (AI) is the study of how to make

computers (machines) do things Language Engine

runs on the same lines of an inference engine.

Inference Engine is a tool from Artificial

Intelligence(AI). The first inference engines were

components of Expert Systems. The typical expert

system consisted of a knowledge base and an

inference engine. The knowledge base stored facts

about the world. The inference engine applies

logical rules to the knowledge base and deduced

new knowledge. This process would iterate as each

new fact in the knowledge base could trigger

additional rules in the inference engine.

Inference engines work primarily in one of two

modes either special rule or facts: forward chaining

and backward chaining. Forward chaining starts

with the known facts and asserts new facts.

Backward chaining starts with goals, and works

backward to determine what facts must be

asserted so that the goals can be achieved.

Provided with the regional ascii fonts available.

Fonts can be generated based on the requirement

of the glyphs is discussed in the paper

“Multilingual Font Creation by Mapping Unicode to

ASCII”.

Forward chaining approach is selected as it

starts with the known facts. Language Engine

ABSTRACT

International Journal for Modern Trends in Science and Technology

Volume: 03, Special Issue No: 01, February 2017

ISSN: 2455-3778

http://www.ijmtst.com

https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Forward_chaining
https://en.wikipedia.org/wiki/Backward_chaining
http://www.ijmtst.com/

160 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

based on the rules of the language that appears in

the text and with the provided rules for each

regional language. In India we have our own

regional languages , its indices and rules.

II. FORWARD CHAIN RULES BASED SYSTEM

Input is the Unicode text and output is with the

ascii characters with its associated Ascii regional

fonts based on the language. This is a unicode

word looks like this

In Unicode supportable editor

In Unicode unsupportable (only Ascii supportable –

utf-8) editor తెలుగు

<0c24>+<0c46>+<0c32>+<0c41>+<0c17>+<0c41>

.

Actually it looks like a three character word, but it

has 6 unicode characters.

Each unicode character is 2 bytes, 12 bytes of

space is occupied if it is in memory.

We can minimize this by the following procedure:

1. Identifying the Unicode characters to

which language set it belongs to.

2. By mapping Unicode characters to ascii

(Creation of a new font or select the existing

regional language ascii font - vendor)

3. Production of rules form that font.

4. Rules are composed based on its

language and its meaning etc.,

 These rules will help in arranging the translated

words correctly based on the context of the

sentence. This rule based system consists of

various steps like syntax analysis, semantic

analysis, morphological analysis, syntax

generation and semantic generation. Rule based

systems are less robust and gives good

grammatical results if it finds an appropriate parse

else it fails. Here fails means the rule does not

exist. So a new production rule has to be added.

Rule based methodologies can be broadly classified

as direct, transfer and Interlingua [9]. In direct

methodology, there are no intermediate stages in

the translation. It doesn’t use any complex rules or

parsing structures. This method makes use of

syntactic and semantic similarities of source and

target languages. Transfer methodology works in

three phases namely analysis, transfer and

generation. Transfer method consists of complex

rules. Interlingua method works in two phases. The

source text is converted into an Interlingua

representation from which the text in target

language is generated.

Based on the glyph location in the ascii set

production rule has to be designed. User Interface

tools are available to produce or create the rules

based on the fonts.

At the time of parsing of text every character is

taken with its Unicode value and a enclosed in tag

format and a delimiter + is added, inorder to be

easy for matching the rule for its presence in the

provided resource.

Placing the required language (telugu) characters

with its sets in the ASCII set along with its vowels,

consonants, numbers etc.

Selecting that characters it becomes three letter

word.

Facts are dumped in the Rules Engine.

When a hit occurs it selects the fact matching rule

from rules engine and places that characters in the

output.

In this way we can parse word by word. Once the

hit is occurred we can place that in our database as

not to parse once again. Already we have parsed it

and the rule is available.

Resources are to be placed in the projects

Resources folder. Fonts, Rules, Languages are

some of the resources. Fonts can be ttf, otf. For

ascii based font insertions we use .pfa(post script

ascii font) files. For binary based we use .pfb(post

script binary font) files.

Rules resources, language sets resources are to be

provided in xml formats which is easy for editing ,

updating.

Rules Engine: Rules are xml based elements with

key value pair. Key can have combination of

characters and its extensions as well as value can

have combination of characters with extensions.

But the value of the character changes from

Unicode to ascii.

 Rules generally prepared by language experts of

that regional. Here the input and output both are of

same language. There will not be any difference in

the output means visual display. But changes in

the rendering format and file size it consumes.

161 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

Flow of Language Engine

Parse Engine: Parse Engine will take input from

the document word by word. Extracts the unicode

range value and identifies the character set.

Languages.xml file contains the language ranges

that are specified in the unicode.org. Here we are

restricting to Indian Regional languages.

Snapshot of Languages.xml file

<Languages>

<Tamil>0B80-0BFF</Tamil>

<Telugu>0C00-0C7F</Telugu>

<Kannada>0C80-0CFF</Kannada>

….

</Languages>

Identifies the unicode language by checking the

character from Language.xml file. The related

Language file is found in Resources folder and is

loaded in to memory.

Parser will parse the text and checks in the

database , if the hit already done or a new hit. If it

doesn't matches , it passes to Rules Engine. Rules

Engine checks the match for first unicode

character and if it matches , then next character

like that tries to match for a rule with all the

characters sequentially.

Rules Engine: It is an XML based DOM file with

each language rules in its name.

Telugu language - Telugu.xml

Kannada language - Kannada.xml

…

Once the Language file is loaded in to memory, it

forms a dictionary with key value pairs. Keys will

be unique. In the above Rules the left side of '=' is

key and right side is value. Rules are loaded in to

Map or Dictionary. The parsed text that has been

given to Rules Engine as input is matched with the

keys, if it matches the equivalent value is extracted

and given back as output to Parse Engine.

Inference Engine: At the time of parsing of text if

the parsed text match is found in the database it

infers that already existing, directly it provides the

parser with a value, else it infers the Rules Engine

to check for a match. If the rules engine did not find

a rule from the loaded resource , then there is a

facility to add or compose a new rule for a new word

that is not found.

To compose Production rules(facts) for Telugu

language below are some rules

 Note

x, X and ` [character under '~' in English

keyboards] are used as modifiers and/or splitters

162 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

Expertsystem = knowledge base + Inference Engine

Language Expert is a tool that has knowledge of

language in the form of base rules and production

rules. Base rules are with vowels, consonants,

numerals. Production rules are compositions of

consonants with vowels and some modifiers.

Similarly this can be done for other regional

language with its rules and specifications.

Control Flow Diagram

At the parse engine level, and at rules production

it takes the above provided specifications for telugu

language. For some consonants all vowels are not

framed. With its frequent occurrences the

combinations are mapped in the fonts.

In this way in the forward chaining we can make

a language engine which will be useful for

conversion of unicode to ascii.

163 Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017)

IV. CONCLUSION

We have briefly described how to convert Unicode

text to ascii for the rendering of the editors that

doesn’t support Unicode characters Vendor creates

fonts for required data sets where size of the file is

the criteria to be concentrated.

This paper is concentrating and giving an

overview of how to create rules for a regional font

with its rules framing.

This can be extended further for other languages

also. It may include CJK(Chinese-japanese-korean)

languages. But due to more character sets its

space consuming.

REFERENCES

[1] Peter J.F. Lucas & Linda C. van der Gaag “Principles

of Expert Systems”, Centre for Mathematics and

Computer Science, Amsterdam, published in 1991

by Addison-Wesley

[2] Akshar Bharati, Vineet Chaitanya, Amba P. Kulkarni

and Rajeev Sangal, “ ANUSAARAKA: Machine

Translation in Stages”, A Quaterly in Artificial

Intelligence, Vol. 10, No. 3, July 1997

[3] Latha R Nair and David Peter S, “MAchien

Translation system for Indian Languages”, IJCA, Vol

39, No. 12012

[4] http://www.azhagi.com/az-telugu-classic.html

[5] Sugata Sanyal and Rajdeep Borgohain, “Machine

Translation Systems in India”, arXiv, April 2010.

[6] Lewis, M. Paul, Gary F. Simons, and Charles

D.Fennig(eds.). 2014. Ethnolouge: Languages of the

world, seventeenth edition, Dallas Texas: Sil

International. http://www.ethnologue.com.

[7] Antony, P. J. "Machine Translation Approaches and

Survey for Indian Languages." Computational

Linguistics and Chinese Language Processing Vol 18

(2013): 47-78.

[8] http://www.unicode.org/versions/Unicode8.0.0/U

nicodeStandard-8.0.pdf

[9] https://www.cl.cam.ac.uk/~mgk25/unicode.html

[10] Antony, P. J. "Machine Translation Approaches and

Survey for Indian Languages." Computational

Linguistics and Chinese Language Processing Vol 18

(2013): 47-78.

[11] Antony P J and Dr. Soman K P Machine

Transliteration for Indian Languages: A Literature

Survey International Journal of Scientific &

Engineering Research, Volume 2, Issue 12,

December-2011 1 ISSN 2229-5518

http://www.azhagi.com/az-telugu-classic.html
http://www.unicode.org/versions/Unicode8.0.0/UnicodeStandard-8.0.pdf
http://www.unicode.org/versions/Unicode8.0.0/UnicodeStandard-8.0.pdf
https://www.cl.cam.ac.uk/~mgk25/unicode.html

