
 

 
14     Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html  
 
 

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017) 

  

 

 

 
 

 
A Study on Deployment of Web Applications 
Require Strong Consistency using Multiple Clouds 
 

P.R.S.M.Lakshmi1 | K.Santhi Sri2  | Dr.N.Veeranjaneyulu3 
 
   

 
 

1Assistant Professor, VFSTR University, Guntur, AP, India. 
2Associate Professor, VFSTR University, Guntur, AP, India. 
3Professor, VFSTR University, Guntur, AP, India. 

 

To Cite this Article 
P.R.S.M.Lakshmi, K.Santhi Sri and Dr.N. Veeranjaneyulu, “A Study on Deployment of Web Applications Require Strong 
Consistency using Multiple Clouds”, International Journal for Modern Trends in Science and Technology, Vol. 03, Special 
Issue 01, 2017, pp. 14-17. 
 

 
 

Web Applications require strong consistency to be deployed in multiple Clouds, various scalable database 

systems that can guarantee strong inter-data center consistency with reduced network. For applications 

using these database systems, it is essential to take both network latencies to end users and communication 

transparency caused by maintaining database consistency into account when selecting the hosting data 

centers. In this paper, we explain about to require strong inter-data center consistency under dynamic 

workloads. 

 

KEYWORDS: strong, consistency, deployment 
 

Copyright © 2017 International Journal for Modern Trends in Science and Technology  

All rights reserved. 

 

I. INTRODUCTION 

Web applications are deployed in geographically 

dispersed Cloud data centers, application 

providers need to handle data consistency across 

data centers (Inter-data center consistency), which 

is challenging for some applications requesting 

strong consistency, e.g., e-commerce and banking. 

To make things worse, traditional. Inter-data 

center commit (two-phase commit) involves high 

network cost. Therefore, applications often have to 

adopt eventual consistency (asynchronous 

replication) to minimize user perceived latencies, 

which complicates application logic and forces 

application developers to handle the conflicts and 

errors caused by inconsistent data [1], even though 

such cases are rare in production as data 

synchronization usually completes in a short time 

in eventual-consistent databases [2]. After realizing 

that lack of strong consistency has impaired 

developing productivity, industry and academia 

shift to developing new databases that can 

guarantee strong interdata center consistency [4, 

5, 7, 8, 9, 10, 1, 12] to help relieve the 

programmers’ coding burden. Though inter-data 

center consistency protocols of these new 

databases are often optimized regarding network 

overhead, the resulted network delays are still 

significant and cannot be ignored. Thus, to 

minimize user perceived response time, it is 

essential to take the database network delay into 

account when selecting hosting data centers and 

when routing requests submitted by different users 

to the chosen data centers. 

In this chapter, we aim to minimize the total 

excess response time users may perceive beyond 

the Service Level Objective (SLO) for applications 

with various inter-data center consistency 

requirements. The proposed approach benefits 

application providers so that they can ease their 

ABSTRACT 

International Journal for Modern Trends in Science and Technology 

Volume: 03, Special Issue No: 01, February 2017 

ISSN: 2455-3778 

http://www.ijmtst.com 

http://www.ijmtst.com/


 

 
15     Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html  

 

 

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017) 

development by adopting these new databases, and 

in the meantime keep the performance penalties as 

low as possible. 

The contributions of the paper are two folds. 

Firstly, a genetic algorithm that searches a 

deployment plan with a minimum amount of SLO 

violations when the application is initially migrated 

to the Cloud. After the initial deployment, the 

application performance may degrade as time 

passes due to changes in workload distribution. 

Secondly, to react to these changes, we propose a 

decision-making algorithm that continuously 

optimizes the deployment to balance application 

performance, redeployment cost, and operational 

cost. We exemplify how our approach can be 

applied to two widely used databases (Cassandra 

[4] and Galera Cluster [7]). To demonstrate the 

effectiveness of our approach, we conduct 

simulation studies using settings of two real 

applications (TPC-W [13], an e-commerce website, 

and Twissandra [14], a Twitter-like social network 

application). The existing protocols and databases 

with strong inter-data center consistency support.  

II. DATABASE SUPPORTING STRONG INTER-DATA 

CENTER CONSISTENCY 

Google’s Systems 

Google have been developing distributed 

databases that are both highly scalable and 

strongly consistent. Their first achievement is 

MegaStore [5]. It implements ACID semantics 

within each entity group (objects stored together) 

using synchronous replication based on optimized 

Paxos, and transaction across entity groups using 

two-phase commit. The second outcome is 

Spanner [8], which further supports external 

consistency (linearizability) with the help of 

physically synchronized clocks (GPS and atomic 

clock).Upon Spanner, Google built F1 [1], a 

distributed relational database system for their 

critical AdWords platform. It provides more 

enriched transaction semantics with high 

availability and scalability. All Google’s systems 

remain proprietary. 

Open Source Databases 

Cassandra [4] is a shared nothing NoSQL 

database using quorum-based protocol for its 

consistency model. It allows users to set individual 

read and write quorums at the granularity of query. 

It also provides limited transaction support 

(lightweight-transaction) starting from version 2.0 

using a heavy-weight Paxos consensus protocol, 

which requires four round-trip messages to 

complete. Galera cluster [7] is an open source 

scalable synchronous replication solution 

developed and maintained by Codership for MySql. 

Galera’s replication is based on certification based 

commit [6]. 

III. APPLICATION AND DEPLOYMENT MODEL 

Target Applications 

We target session-based web applications. We 

assume the delay of the application is dominated 

by the round-trip time (RTT) between different 

parties, as the processing time of the request can 

be considered constant provided that enough 

computing resources are provisioned. In this case, 

whether the SLOs can be met is largely determined 

by the involved network latencies. To benefit from 

our work, the application should also be deployed 

in geographically dispersed data centers, and some 

of its requests should require strong consistency, 

e.g., a group working application that always 

reflects the newest updates to its end-users, a 

social-network application that consistently and 

timely shows people’s posts and comments, or a 

distributed banking application that needs to 

satisfy ACID semantics. 

Deployment Model 

We assume the whole software stack of the 

application (including application servers and 

underneath databases) is deployed in multiple 

geographically dispersed data centers and each 

application replica can autonomously scale up and 

down according to the changing workloads. We 

assume all chosen data centers have the full copy 

of data. Companies, like Face book [11], commonly 

adopt this approach. Furthermore, the databases 

studied in this chapter, Cassandra and Galera. 

Cluster, support only full replication for 

multi-data center deployment within the same key 

space or namespace. The target applications 

should also use shared-nothing multimaster 

database clusters, which means all database 

queries originated from any server can be served by 

database nodes collocated in the same data center. 

Depending on the database and different queries’ 

consistency requirements, we also consider the 

network delays caused by communications among 

database cluster nodes located in different data 

centers into the problem model. All inner-data 

center communications, otherwise, are omitted. 

 

 

 



 

 
16     Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html  

 

 

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017) 

Table 1: Symbols of the Cassandra Model 

 

 
 

We classify users into groups according to their 

geographic locations. All requests from the same 

location are routed to the same data center using 

DNS routing services similar to Amazon Route 53’s 

Geo Routing [3]. 

Initial Deployment: When the application is 

initially migrated to the Clouds, our approach aims 

to select the hosting data centers and route 

requests to chosen data centers with minimum 

amount of total estimated SLO violations according 

to the current geographical distribution of 

requests2. 

Deployment Optimization: In the second step, 

our approach continuously attempts to maintain 

high performance of the application by contracting, 

optimizing, or expanding the deployment with 

acceptable migration3 efforts in response to 

changes in the requests distribution. 

In this paper, we use the term expand and 

contract respectively for increasing and 

decreasing the number of chosen data centers. We 

focus on the geographical distribution of resources 

instead of the total resource amount, for which the 

term commonly used is scaling up and down. 

The Cassandra Model: The widely-adopted 

replication strategy for Cassandra involving 

multiple data centers in production is symmetric 

replication, where each data center stores the same 

number of replicas [4]. Cassandra uses 

quorum-based protocol to implement consistent 

read/write operations across replicas, and it 

supports various consistency configurations at the 

granularity of query. Given the set of selected data 

centers (X), using the symbols in Table 1, its 

database network overhead dltl
j can be modeled 

We model the delay of the read/write query as 

the slowest replica’s response time in the quorum. 

For example, if the read quorum is 3 and each data 

center holds 1 data replica, Cassandra will wait to 

receive replies from the 2 replicas located in other 

data centers as the network delay to the local copy 

is orders of magnitude smaller. Hence, the resulted 

delay will normally be the second shortest RTT 

latency from the local data center j to the other 

selected data centers. 

In Cassandra, the remote replica only replies 

digest of the objects. If the local copy is stale, it will 

send another request to fetch the complete data 

and update all the stale replicas. We ignore this 

overhead as such case is rare and, thus, only 

impose a little impact on the average delay of all the 

requests. 

The administrator is responsible for deciding the 

quorum settings of each query, as, besides 

consistency and performance, other concerns in 

this process may complicate the decision, such as 

availability (Qr = 1,Qw = H maximizes the 

performance for read intensive applications but is 

susceptible to failures). For query requiring strong 

consistency. Application administrator should 

specify its read/write quorum so that the object’s 

Qr and Qw satisfy Qr + Qw > H. Certainly, it is also 

possible to set a weaker configuration [2] if strong 

consistency is unnecessary. 

 
Table 2: Symbols of the Galera Model 

Term Meaning 

b(j,X) The function finds the largest RTT 

latency among all latencies between 

each data center within X and data 

center j 

Vl Number of transactions that have 
write operations in request type l 

 

 

The Galera Model: 

  In Galera cluster, all read-only transactions are 

executed locally while transactions with write 

operations synchronously replicated to all remote 

replicas using certification-based commit [6]. There 

is no further group communication involved in the 

protocol [6] after the transaction ID is determined; 

the network latency is dominated by the data 

center that has the largest RTT latency to the 

request originator. Based on symbols in Table 2, 

dltl
j, in this case, can be simply formulated as: 

Term Meaning 

Rl Set of read queries in type l request 

Wl Set of write queries in type l request 

Qrl
k Read quorum of the kth read query in 

request type l 

 

Qwl
m Write quorum of the mth write query in 

request type l 

r The replication factor of data centers 

a(j, k,X) The function finds the kth shortest RTT 

latency among all latencies between each 
data center within X and data center j 

 



 

 
17     Volume 3 | Special Issue 01 | February 2017 | ISSN:2455-3778 | www.ijmtst.com/ncracse2017.html  

 

 

Proceedings of National Conference on Recent Advances in Computer Science & Engineering (NCRACSE-2017) 

                    dltl
j= Vlβ (j,X) j € X, l €I 

Where Vl is the number of database transactions 

that have write operations in type l request, and 

the function b(j,X) returns the largest RTT latency 

among all latencies between each data center 

within X and data center j.Galera nodes may queue 

the messages before delivering them due to the 

group communication overhead. We neglect this 

delay because we believe it is unpredictable, 

application specific, and also insignificant 

compared to the network transfer delay. To build a 

more precise model, application administrators 

can profile their applications. 

IV. CONCLUSION 

We proposed an approach to help web 

application providers deploy their applications with 

various inter-data center consistency requirements 

across multiple Cloud data centers. 

V. FUTURE ENHANCEMENT 

After the application is deployed in the Clouds, it 

comes to the task to ensure just enough resources 

are provisioned to the application during its life 

cycle so that the QoS requirements can be met with 

the minimum cost incurred. We shift our focus to 

the provisioning aspect of web application 

management and propose an auto-scaler for web 

applications using heterogeneous spot instances. 

REFERENCES 

[1] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. 

Whipkey, E. Rollins, M. Oancea,K.Littlefield, D. 

Menestrina, S. Ellner, J. Cieslewicz, I. Rae, T. 

Stancescu, and H. Apte, “F1: A distributed sql 

database that scales,” Proc. VLDB Endow., vol. 6,no. 

11, pp. 1068–1079, Aug. 2013. 

[2] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. 

Hellerstein, and I. Stoica, “Quantifying eventual 

consistency with pbs,” The VLDB Journal, vol. 23, 

no. 2, pp. 279–302, 2014. 

[3] “Route 53,” 2016. [Online]. Available: 

https://aws.amazon.com/route53/ 

[4] Apache, “Cassandra,” 2015. [Online]. Available: 

http://cassandra.apache.org/ 

[5] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. 

Khorlin, J. Larson, J.-M. Leon, Y. Li,A. Lloyd, and V. 

Yushprakh, “Megastore: Providing scalable, highly 

available age for interactive services,” in Proceedings 

of the Conference on Innovative Data system 

Research (CIDR), 2011, pp. 223–234. 

[6] Codership, “Certification-based commit,” 2014. 

[Online]. Available: 

http://galeracluster.com/documentation-webpages

/certificationbasedreplication.html  

[7] “Galera cluster,” 2015. [Online]. Available: 

http://galeracluster.com/products/ 

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, 

J. J. Furman, S. Ghemawat,A.Gubarev, C. Heiser, P. 

Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, 

A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. 

Quinlan, R. Rao, L. Rolig, Y. Saito,M. Szymaniak, C. 

Taylor, R. Wang, and D. Woodford, “Spanner: 

Google&rsquo;sglobally distributed database,” ACM 

Trans. Comput. Syst., vol. 31, no. 3, pp. :1–8:22, 

Aug. 2013. 

[9] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and 

A. Fekete, “MDCC: Multi-data center consistency,” in 

Proceedings of the 8th ACM European Conference on 

Computer Systems, ser. EuroSys ’13. New York, NY, 

USA: ACM, 2013, pp. 113–126. 

[10] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and 

A. El Abbadi, “Low-latency multi-datacenter 

databases using replicated commit,” Proc. VLDB 

Endow., vol. 6,no. 9, pp. 661–672, Jul. 2013. 

[11] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. 

Lee, H. C. Li, R. McElroy,M. Paleczny, D. Peek, P. 

Saab, D. Stafford, T. Tung, and V. Venkataramani, 

“Scaling memcache at facebook,” in Proceedings of 

the 10th USENIX Symposium on Networked 

Systems Design and Implementation (NSDI 13). 

Lombard, IL: USENIX, 2013, pp.385–398. 

[12] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. 

Shao, and D. J. Abadi, “Calvin:Fast distributed 

transactions for partitioned database systems,” in 

Proceedings of the 2012 ACM SIGMOD International 

Conference on Management of Data, ser. 

SIGMOD’12. New York, NY, USA: ACM, 2012, pp. 

1–12. 

[13] Transaction Processing Performance Council, 

“TPC-W Workload,” 2015. [Online]. Available: 

http://www.tpc.org/tpcw/ 

[14] Twissandra, “Twissandra.” [Online]. Available: 

https://github.com/twissandra/twissandra  

 

 

https://aws.amazon.com/route53/
http://cassandra.apache.org/
http://galeracluster.com/documentation-webpages/certificationbasedreplication.html
http://galeracluster.com/documentation-webpages/certificationbasedreplication.html
http://galeracluster.com/products/
http://www.tpc.org/tpcw/
https://github.com/twissandra/twissandra

