

429 International Journal for Modern Trends in Science and Technology

qrAs per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology
Volume 10, Issue 02, pages 429-432.

ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol10issue02.html
DOI: https://doi.org/10.46501/IJMTST1002057

Double Text Data Compression: New LZW Algorithm

with Bit Reduction Algorithm

N Srinivasa Rao, M Praveen Kumar, K Sai Prasanth, Mastanaih Naidu Y

Department of Information Technology, Bapatla Engineering College, Bapatla, AP, India.

To Cite this Article

N Srinivasa Rao, M Praveen Kumar, K Sai Prasanth, Mastanaih Naidu Y, Double Text Data Compression: New LZW

Algorithm with Bit Reduction Algorithm, International Journal for Modern Trends in Science and Technology, 2024,

10(02), pages. 429-432.https://doi.org/10.46501/IJMTST1002057

Article Info

Received: 28 January 2024; Accepted: 19 February 2024; Published: 25 February 2024.

Copyright © N Srinivasa Rao et al;. This is an open access article distributed under the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

 The process of data compression entails the reduction of bits required to represent information, providing benefits such as

reducing the usage of valuable resources, like disk space and transmission bandwidth. It is widely integrated into various

technologies, such as storage systems, databases, operating systems, and software applications, making it crucial to choose an

appropriate compression algorithm. This paper proposes combining two techniques, namely modified LZW with dynamic bit

reduction achieve a superior compression ratio. This method helps address the issue of costly resources associated with data,

specifically disk storage and bandwidth. Further development of the proposed system architecture could involve combining text

and image compression to lessen the strain of transmitting and storing significant files via mail or social media websites such as

Facebook or Instagram.

KEYWORDS: Text Data Compression, Decompression, compression ratio, LZW, Decoding, Encoding.

1. INTRODUCTION

The concept of data compression is the process of

transforming a file, such as text, audio, or video, into a

compressed version, which can be fully recovered

without losing any vital information. This process is

useful in saving storage space, especially if the original

file size is too large. For instance, a 4MB file can be

compressed to a smaller size to conserve storage space.

Moreover, compressed files are easily exchanged over

the internet since they can be uploaded and downloaded

much faster. Therefore, it is imperative to be able to

reconstitute the original file from the compressed

version whenever required. Data compression involves

encoding rules that can significantly reduce the number

of bits required to store or transmit a file, thereby saving

on storage and transmission costs.

In essence, data compression is the technique of

encoding data into fewer bits than the original

representation, resulting in less storage space and

shorter transmission time while communicating over a

network. This method is possible because real-world

data is highly redundant, meaning it contains lots of

repetitive information. Therefore, data compression is

defined as a method of reducing data size by using

ABSTRACT

http://www.ijmtst.com/vol10issue02.html
https://doi.org/10.46501/IJMTST1002057
https://doi.org/10.46501/IJMTST1002057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ijmtst.com/vol10issue01.html

430 International Journal for Modern Trends in Science and Technology

different techniques that can be lossy or lossless. To

compress data, a compression program is used to

convert it from an easy-to-use format to an optimized

version that is more compact. Similarly, an

uncompressing program can restore the information to

its original form.

Two primary types [8] of data compression exist, each

with distinct applications. Lossy data compression [2] is

frequently utilized to reduce the size of image files for

communication or archival purposes. In contrast,

lossless data compression is typically utilized to preserve

the integrity of text or binary files during transmission or

archival storage. These two classes are clearly delineated:

lossy compression and lossless compression.

2. LITERATURE SURVEY

Data compression comes in different forms, one of which

is known as lossy compression. In this type of

compression, the decompressed data may not be an

exact replica of the original data, but it is close enough to

serve its intended purpose. Lossy compression should

not be used for critical data such as text since the original

message cannot be recovered once it has been

compressed. However, it is particularly useful for

Digitally Sampled Analog Data (DSAD) which mainly

comprises of sound, video, graphics, or picture files.

Lossy compression algorithms like JPEG, MPEG, and

MP3 are widely used on the internet, especially in

streaming media and telephony applications. One

disadvantage of lossy data compression is the potential

for generation loss when files are repeatedly compressed

and decompressed, leading to a decrease in text quality.

Nonetheless, lossy image compression is frequently used

in digital cameras to save space without compromising

the quality of pictures.

2.1 Original LZW Data Compression

Lempel-Ziv-Welch (LZW [4]) is a universal lossless data

compression algorithm created by Abraham Lempel,

Jacob Ziv, and Terry Welch. Lempel- Ziv-Weltch (LZW)

is one of the powerful existing compression algorithms.

It finds in many important applications like win zip, 7zip

and etc.

1. Original LZW is a fixed length coding algorithm.

Uses 12bit unsigned codes. First 256 codes are the

entire ASCII character set.

2. Lateral entries in the LZW dictionary [7] are strings

and codes.

3. Every LZW code word is a reference to a string in

the dictionary.

LZW compression replaces strings of characters with

single codes. It does not do any analysis of the incoming

text. Instead, it just adds every new string of characters it

sees to a table of strings. Compression occurs when a

single code is output instead of a string of characters.

Basic idea [3]

(1) Replaces strings of characters with single integer

codes.

(2) A table of string/code pairs is built as the compression

algorithm reads the input file.

(3) The table is reconstructed as the decompression

algorithm reads.

2.2 Modified LZW [10]: It can facilitate variable length

coding while compression.

Algorithm-1

Modified LZW Compression Algorithm [5]:

1: DEFINE CODE LENGTH

2. if (STR = get input character) = EOF then

3: while there are still input characters do

4: CHAR = get input character

5: if STR+CHAR is in the String table then

6: STR = STR+CHAR

7: else

8: output code for STR

9: add STR + CHAR into the String table

10: STR = CHAR

11: end if

12: end while

13: Output the code for STR

14: end if

Algorithm-2

Modified LZW Decompression Algorithm:

1: DEFINE CODE LENGTH

2. Read OC = OLD CODE

431 International Journal for Modern Trends in Science and Technology

3: if OC is not EOF then

4: output OC

5: CHARACTER = OC

6: while there are still input characters do

7: Read NC = NEW CODE

8: if NC is in not DICTIONARY, then

9: STRING = get translation of OC

10: STRING = STRING + CHARACTER

11: else

12: STRING = get translation of NC

13: end if

14: output STRING

15: CHARACTER = first character in STRING

16: add OC + CHARACTER into the DICTIONARY

17: OC = NC

18: end while

19: Output string for code

20: end if

2.3 Bit Reduction Algorithm [2]:

Data compression is always useful for encoding

information using lesser number of bits than the original

representation it would use. There are many applications

where the size of information would be critical. In data

communication, the size of data can affect the storage

cost. This algorithm was originally implemented for use

in a text file like message communication application.

The idea in is this program reduces the standard 8-bit

encoding to some application using specific 5-bit

encoding system and then pack into a byte array. This

method will reduce the size of a string considerably

when the string is lengthy and the compression ratio is

not affected by the content of the string. The Algorithm

1. Compression (Encoding [4]):

Let’s assume that we have a input string with 8

characters. If we put this on a byte array, we get a byte

array with the size of 8. A single character will need 8

bits if the characters are represented with ASCII values.

A set of 8 bits can represent 28 different characters. But if

we consider the application, a simple text data might be

included only around 26 different characters. Therefore,

it is need to have 5-bit encoding which can give up to 25

different characters to represent. For converting into the

new 5-bit encoding, we assign new values to the

alphabet characters like | p=1 | q=2 | r=3 | s=4 | t=5 | u=6

| v=7 | w=8 |. If we look more closely at the new byte

array, it will look like the following (the values of

characters are in binary representation). 00000001 |

00000010 | 00000011 | 00000100 | 00000 101 | 00000110 |

00000111 | 00001000| But we use 8 bytes for storing the 8

characters. In the next step, we will cut three bits from

the position of 3rd bit from the left side and extract the 5

least significant bits. The result will be shows as follows:

|00001|00010|00011|00100|00101|00110|00111|01000|.

Now we have reduced 8 bytes to 5 bytes. The next step

shows how these 5 bytes convert to the 8 bytes and we

get the original information.

2. Decompression (Decoding):

When an array of bytes is shown, each character

should be represented in the binary form. Then all the 1’s

and 0’s should be arranged as their index values and all

data split to the sets of five bits. After splitting data, it

will be as follows: Code |00001 000|10 00011 0|0100

0010|1 0011000|111 01000| then these sets converted to

decimal values represent the characters that we have

compressed. Code |00001 = 1(a) 000|10 = 2 (b) 00011 =

3(c) 0|0100 = 4 (d) 0010|1 = 5 (e) 00110 = 6 (f) 00|111 = 7

(g) 01000| = 8 (h). Then the information will be shown in

original form as “abcdefgh”.

3. DESIGN

In the design we can achieve better compression

combining the both techniques one after one at the time

compressing the text data. First apply the new approach

in LZW algorithm to compress the text data, and second

use the data produced by first technique encoded

information as input and apply this technique.

1. Text Data Compression Algorithm

Step I: Input the modified LZW result text data to be

compressed.

Step II: Find the number of unique words in the input

text data and assign the symbols that are not in the input.

Step III: Now find the unique characters from the step II.

432 International Journal for Modern Trends in Science and Technology

Step IV: Find the number of bits required to assign bit

code to the characters.

Step V: Assign the numeric code to the unique characters

found in the step II according to the number of bits

calculated in step IV.

Step VI: Starting from first symbol in the input find the

binary code corresponding to that symbols from

assigned numerical codes and concatenate them to

obtain binary output.

Step VII: Add number of 0’s in MSB of Binary output

until it is divisible by 8.

Step VIII: Generate the ASCII code for every 8 bits for the

binary output obtained in step VI and concatenate them

to create input for second phase.

[Step VI is the result of dynamic bit Reduction method in

ASCII format]

Step IX: Compressed data is obtained.

2. Text Data Decompression Algorithm

Step I: Input the Final output from compressed phase.

Step II: Calculate the binary code corresponding to the

ASCII values of input obtained in Step I.

Step III: Remove the extra bits from the binary output

added in the compression phase.

Step IV: Calculate the numeric code for every 8 bits

obtained in the Step IV.

Step V: For every numeric value obtained in the step V,

find the corresponding symbol to get the final

decompressed data.

Step VI: Concatenate the data symbols obtained in the

step VI and obtain the final output.

Step VII: Display the final result to the user.

4. CONCLUSION & FUTURE WORK

Modified LZW algorithm with Dynamic bit reduction

techniques are presented in this paper. It concludes that

we can achieve the goal to reduce the actual file size into

a better compressed file. This indicates that combining

two techniques have performed better than the existing

LZW algorithm and one time compression in terms of

compressed file size. Limitations of this work include

dictionary overflow with large files and increased

searching time.

The suggested future work is reducing the time of

compression using multi programming technique on this

paper.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] Srinivasa Rao Namburi, Praveen Kumar Muvva, A New

Approach To Increase Lzw Algorithm Compression Ratio,

IJEAST, Vol. 4 Issue 10, pg. 141-144, 2020.

[2] Rajinder Kaur, Er. Monica Goyal, An Algorithm For Lossless Text

Data Compression, IJERT, vol. 2 Issue 7, 2013.

[3] David Solomon. Data compression: The complete references book,

Pub-SV 3rd Edition, 2004.

[4] Michael Dipperstein. Lempel-Ziv-Welch (LZW) Encoding

Discussion, http://michael.dipperstein.com/lzw/.

[5] Simrandeep kaur, V.Sulochana Verma, Design and

Implementation of LZW Data Compression Algorithm,

International Journal of Information Sciences and Techniques

(IJIST) Vol.2, No.4, July 2012.

[6] Evon Abu-Taieh1, Issam AlHadid, A New Lossless Compression

Algorithm, Modern Applied Science, Canadian Center of Science

and Education, Vol. 12, No. 11, 2018.

[7] Restu Maulunida, Achmad Solichin, Optimization of LZW

Compression Algorithm With Modification of Dictionary

Formation, Indonesian Journal of Computing and Cybernetics

Systems) Vol.12, No.1, January 2018, pp. 73~82.

[8] J.Uthayakumar, T. Vengattaraman, P. Dhavachelva, A survey on

data compression techniques: From the perspective of data

quality, coding schemes, data type and applications, Journal of

King Saud University - Computer and Information Sciences, 2018.

