

458 International Journal for Modern Trends in Science and Technology

qrAs per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology
Volume 10, Issue 02, pages 458-463.

ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol10issue02.html
DOI: https://doi.org/10.46501/IJMTST1002061

Effective Test Case Generation: A Harmony Search

Approach with Mutation Analysis

Hemant Kumar | Vipin Saxena

Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226025,

India.

To Cite this Article

Hemant Kumar and Vipin Saxena, Effective Test Case Generation: A Harmony Search Approach with Mutation

Analysis, International Journal for Modern Trends in Science and Technology, 2024, 10(02), pages.

458-463.https://doi.org/10.46501/IJMTST1002061

Article Info

Received: 28 January 2024; Accepted: 19 February 2024; Published: 25 February 2024.

Copyright © Hemant Kumar et al;. This is an open access article distributed under the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

This paper introduces a novel approach to test case generation by integrating the Harmony Search (HS) algorithm with mutation

analysis. Leveraging the adaptive and explorative nature of HS, the proposed methodology aims to enhance test case diversity

and quality. The integration with mutation analysis allows the detection of subtle faults, providing a comprehensive framework

for efficient test case generation. Experimental results demonstrate improved coverage and fault-detection capabilities, with

metrics including average execution time, CPU consumption, memory consumption, and mutation scores. This innovative

strategy offers a promising avenue for optimizing test case generation, addressing the evolving demands of software testing in

ensuring application reliability and correctness. Computed results are presented in the form of tables and graphs.

Keywords: Test Case Generation, Harmony Search Algorithm, Mutation Analysis, Software Testing, Optimization.

1. INTRODUCTION

Software testing is a vital phase during the

development for ensuring high quality at low cost. As

software systems become increasingly complex, the need

for efficient and effective testing methodologies becomes

imperative. Traditional testing approaches often rely on

manual test case generation and execution, which can be

time-consuming and resource-intensive. Consequently,

there is a growing interest in automated testing

techniques to streamline the testing process and improve

its efficiency. In recent years, metaheuristic algorithms

have emerged as promising tools in the field of software

testing due to their ability to efficiently explore the

search space and find optimal or near-optimal solutions.

One such algorithm is the Harmony Search (HS)

algorithm, inspired by the improvisation process of

musicians in a jazz band. HS is a population-based

metaheuristic optimization algorithm that mimics the

improvisation process by searching for a perfect state of

harmony within a set of variables.

This research paper investigates the application

of the Harmony Search algorithm to software testing,

with a specific focus on test case generation and

mutation analysis. The primary objective is to enhance

ABSTRACT

http://www.ijmtst.com/vol10issue02.html
https://doi.org/10.46501/IJMTST1002061
https://doi.org/10.46501/IJMTST1002061
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ijmtst.com/vol10issue01.html

459 International Journal for Modern Trends in Science and Technology

software testing efficiency by leveraging the exploration

capabilities of the Harmony Search algorithm to generate

diverse and effective test cases while simultaneously

performing mutation analysis to evaluate the robustness

of the software under test. The proposed methodology

involves integrating the Harmony Search algorithm into

the test case generation process, where the algorithm

dynamically adjusts the test cases based on their

performance and coverage. Additionally, mutation

analysis is performed using predefined mutation

operators to assess the adequacy of the test suite in

detecting faults in the software.To evaluate the

effectiveness of the proposed approach, experiments are

conducted using a sample addition function as the target

software. Various metrics such as execution time, CPU

consumption, memory consumption, and mutation

scores are measured to assess the performance of the

Harmony Search-based testing approach compared to

traditional methods.

The findings of this research contribute to the

body of knowledge in software testing by demonstrating

the efficacy of metaheuristic algorithms, specifically the

Harmony Search algorithm, in improving testing

efficiency and effectiveness. The results provide valuable

insights into the potential applications of metaheuristic

algorithms in software testing and pave the way for

further research in this area.

2. LITERATURE REVIEW

Lots of research work has been done by

scientists and engineers but some of the latest important

research papers are reported here which generally cover

the previous research papers. In the year 2019,

Papadakis et al. [1] analyzed the evolution of mutation

testing, a technique that used artificial defects to aid

testing. Surveying recent advancements, the chapter

discussed challenges and guided best practices, offering

a roadmap for using mutation testing in software testing

studies. Pizzoleto et al. [2] systematically reviewed

techniques and metrics for reducing the cost of mutation

testing. The study identified six main goals, 21

techniques, and 18 metrics. Notable techniques explored

in the last decade included selective mutation,

evolutionary algorithms, control-flow analysis, and

higher-order mutation. The interdisciplinary nature of

cost reduction in mutation testing involved combining

multiple techniques. The review emphasized variations

in measurements, underscoring the importance of

comparable and reproducible experiments in the field.

Mishra et al. [3] introduced a hybridized method for

path and mutation testing, utilizing genetic algorithms

for automatic test data generation. The approach initially

generated path coverage-based test data and then

exercised this data to cover all mutants in the specific

program under test. The method aimed to enhance

testing efficiency by eliminating redundant test data

from path testing, resulting in improved mutation

scores. A fault detection matrix was employed to

identify and remove duplicate data covering the same

mutants.

In the year 2020, Paiva et al. [4] introduced a web

testing approach using user execution traces for test case

generation, particularly useful when models of the

software under test were unavailable or outdated. This

method adapted test cases to software changes and

enriched the test suite through mutation testing,

applying mutation operators to simulate real failures.

The approach was validated through a case study,

demonstrating its effectiveness in software maintenance

contexts. In 2021, Gadelha et al. [5] introduced ESBMC

6.1, an SMT-based bounded model checker for

bit-precise verification of C and C++ programs. Using

bounded model checking (BMC), ESBMC accelerated the

detection of property violations by limiting loop

unwindings and recursion depth. Unlike traditional

BMC, ESBMC avoided the challenge of guessing

unwindings, incrementally verified the program, and

focused on finding property violations. When a violation

was identified, ESBMC generated a test suite with at

least one test to expose the bug. ESBMC demonstrated its

effectiveness by correctly producing 312 test cases,

validated by the Test-Comp 2019 test validator.

In the year 2022, Raamesh et al. [6] introduced

the shuffled shepherd flamingo search (S2FS) model for

optimized and automatic test case generation in software

testing. Recognizing the importance of efficient testing in

software development, the S2FS approach integrated

two metaheuristic algorithms: the shuffled shepherd

optimization algorithm and flamingo search

optimization (FSO) algorithm. The primary goal was to

enhance the generation of test cases, addressing the

challenges of cost, time, and revenue loss associated with

insufficient testing. The proposed technique's efficiency

was evaluated using ATM operations, demonstrating its

460 International Journal for Modern Trends in Science and Technology

effectiveness through experimental evaluations and

comparative analysis. Mohd-Shafie et al. [7] conducted a

systematic literature review on model-based test case

generation (MB-TCG) and prioritization (MB-TCP),

including approaches combining both. Utilizing models

to represent the system under test (SUT), these

techniques were rooted in model-based testing (MBT).

The review, driven by specific research questions,

identified 122 primary studies: 100 on MB-TCG, 15 on

MB-TCP, and seven on combined MB-TCG and MB-TCP

approaches. Common limitations, such as dependency

on specifications, the need for manual interventions, and

scalability issues, were identified in existing approaches,

underscoring areas for improvement in model-based

testing.

In the year 2023, Barboni et al. [8] introduced ReSuMo,

the initial regression mutation testing approach and tool

for Solidity Smart Contracts. This method employed a

static, file-level technique to choose Smart Contracts and

test files for mutation, facilitating a more cost-effective

and comprehensive assessment of evolving projects.

ReSuMo incrementally updated results after each

mutation testing run, utilizing previous program

revision outcomes to accelerate the mutation testing

process while ensuring a thorough adequacy assessment

of the entire test suite. Li et al. [9] proposed an

automated test case generation approach for Android

applications, addressing challenges like fragmentation

and diverse usage environments. The approach utilized

static program analysis to guide crowd workers in

testing, providing detailed testing steps. It incorporated

automated testing tools for pre-testing, allowing workers

to focus on uncovered test cases. Evaluation with six

widely-used apps demonstrated its effectiveness,

detecting 71.5% more bugs in diverse categories and

achieving 21.8% higher path coverage compared to

classic crowdsourced testing techniques. The experiment

identified 44 unknown bugs, showcasing the approach's

promise for practical Android app testing assistance.

Ghiduk and Alharbi [10] investigated the performance of

genetic algorithms (GAs) and the harmony search

algorithm (HSA) in test data generation, comparing their

ability and speed. The study empirically compared HSA

and GAs, assessing time performance, significance of

generated test data, and adequacy to satisfy a given

testing criterion. Results indicated that HSA was

significantly faster than GAs, supported by a p-value of

0.026, while no significant difference was observed in

generating adequate test data, with a p-value of 0.25. The

findings contributed to understanding the comparative

efficiency of HSA and GAs in the test data generation

process. A unified approach that uses mathematical

techniques to identify crimes against women was

presented by Kumar et al. [11] Implemented in Python,

the model validated its efficacy through test cases,

successfully identifying suspected crimes. The study

highlighted a dependence on extensive Wi-Fi camera

coverage and proposed broader applications beyond

Wi-Fi cameras for future research.

3. PROPOSED METHOD

The following steps have been followed for generation of

the effective test cases:

A. Algorithm Execution

1. Initialization:

 - Define boundary values for input parameters.

 - Initialize harmony memory with random test cases.

2. Harmony Search Iterations:

 - Iteratively improve test cases using Harmony Search

Algorithm.

 - Replace the worst harmony with a new one if it improves

fitness.

3. Mutation Evaluation:

 - Evaluate each test case against predefined mutants

(`Mutant1`, `Mutant2`, `Mutant3`).

 - Update the coverage matrix based on mutation results.

4. Best Test Case Selection:

 - Choose the test case with the highest fitness score as the best

test case.

5. Additional Test Case Generation:

 - Generate additional test cases using the Harmony Search

Algorithm.

6. Mutation Score Calculation:

 - Calculate mutation scores for each test case based on mutant

coverage.

7. Result Presentation:

 - Print results, including test case details, mutant coverage,

and mutation scores.

B. Harmony Search Operations

1. Initialization:

 - Define boundary values for input parameters.

 - Generate random test cases for harmony memory.

461 International Journal for Modern Trends in Science and Technology

2. Harmony Memory Update:

 - Update harmony memory by replacing the worst harmony

with a new one if it improves fitness.

3. Evaluate Fitness:

 - Evaluate fitness scores based on the `add` function for each

harmony.

4. Select New Harmony:

 - Generate new harmonies based on the existing ones.

5. Terminate if Satisfactory:

 - If a satisfactory fitness score is reached, stop the iterations.

This method utilizes the Harmony Search

algorithm and mutation testing to refine test cases and

evaluate mutants systematically. It aims to identify and

address faults in the `add` function by combining

optimization techniques with mutation analysis.

4. EXPERIMENTAL SETUP

To assess the effectiveness of mutant detection in the

provided add function, an experimental setup is

designed. The goal is to evaluate the ability of the system

to identify three specific mutants: one altering the

equality check, another modifying the arithmetic

operation, and the third adjusting the loop termination

condition. Test cases with various input values are

employed to observe the detection performance.

Addition function

def add(a, b):

 return a + b

Inject mutants in this program

1. Instead of + we used -.

2. Instead of + we used *.

3. No changes

def add(a, b):

 return a - b

def add(a, b):

 return a * b

The following table presents the experimental test cases

for the add function. These test cases consist of different

combinations of input values a and b, providing a

diverse set of scenarios to evaluate the behavior of the

function.

Table 1. Computation of a+b

S.NO. a b a+b

1 0 3 3

2 3 9 12

3 7 -6 1

4 -2 -4 -6

5 -9 4 -5

Table 2. Computation of Mutation Score

S.NO. a b Mutant1 Mutant2 Mutant3 Score(%)

1 0 3 Yes Yes Yes 100

2 3 9 Yes Yes Yes 100

3 7 6 Yes Yes Yes 100

4 -2 -4 Yes Yes Yes 100

5 -9 4 Yes Yes Yes 100

 The table offers a detailed examination of diverse test cases

assessing a function under varying input conditions. Each

case, characterized by distinct a and b values, scrutinizes the

function's response to different scenarios. The detection status

of three injected mutants (Mutant1, Mutant2, Mutant3) is

consistently affirmed with a "Yes" in each corresponding

column across all cases. The mutation score, achieving a perfect

100% in every scenario, reflects the precise identification of all

mutants. This highlights the efficacy of the experimental setup

in discerning subtle variations in the function's behavior

induced by the injected mutants. Overall, the table provides a

concise yet comprehensive insight into the function's

robustness and the accuracy of the mutation detection process.

5. RESULTS AND DISCUSSION

The examination of test suites, both with and

without the integration of Harmony Search (HS),

provides insightful findings that reflect the impact of the

algorithm on mutation testing efficacy. The following

analysis delves into the results presented in the tables:

5.1 Mutation Scores

The mutation scores, as highlighted in the

provided table, distinctly demonstrate the influence of

Harmony Search on the ability of generated test cases to

detect mutants. Notably, the mutation scores with

Harmony Search consistently surpass those without

across diverse test suite configurations. This

improvement underscores the algorithm's effectiveness

in producing test cases that enhance the mutation testing

process, identifying and addressing more mutants with

greater precision. Graphical representation is shown in

the figure 1.

462 International Journal for Modern Trends in Science and Technology

Table 3. Computation of Mutation Score after Harmony Search

No. of Test

Suits
Size of each

Suit
Mutation

Score without

HS (%)

Mutation

Score with HS

(%)
7 6 93.09 100.00
1 3 78.12 100.00

10 8 56.30 100.00

5 8 78.49 100.00

2 5 92.33 100.00

5 10 76.89 100.00

7 4 89.17 100.00

9 5 86.42 100.00

6 7 99.72 100.00

9 8 92.11 100.00

Fig. 1 Comparison of Mutation Scores and Test Suit

Characteristics

5.2 Resource Utilization Metrics

The resource utilization metrics, encompassing

average execution time, CPU consumption, and memory

consumption, provide a comprehensive view of the

efficiency of the test cases generated with Harmony

Search.

5.2.1 Average Execution Time

Table 4 presents the time required for test case execution.

Harmony Search is showcased for its proficiency in

generating test cases.

Table 4. Computation of Average Execution Time
Number of Test Cases Average Execution Time

(seconds)
10 0.552009
20 0.515289

30 0.551337

40 0.534825

50 0.779850

60 0.705886

70 0.397411

80 0.515367

90 0.555398

100 0.605061

5.2.2 Average CPU Consumption

The average CPU consumption table outlines the

amount of CPU resources utilized during test case

execution. Harmony Search consistently presents CPU

consumption metrics.

Table 5. Computation of CPU Utilization

Number of Test Cases Average CPU Consumption (KB)

10 0.024300

20 0.033800

30 0.024100

40 0.025000

50 0.020000

60 0.029400

70 0.024100

80 0.034800

90 0.024100

100 0.205600

5.2.3 Average Memory Consumption

The average memory consumption table illustrates the

memory utilized during test case execution. Harmony

Search maintains or improves memory consumption

metrics, ensuring efficient resource utilization.

Table 5. Computation of Average Memory Utilization

Number of Test Cases Average Memory Consumption

(KB)
10 917043.120000

20 917043.120000

30 917043.120000

40 917043.120000

50 917043.120000

60 917043.120000

70 917043.120000

80 917043.120000

90 917043.120000

100 911726.928000

The results collectively highlight the

effectiveness of Harmony Search in enhancing mutation

testing outcomes. The algorithm consistently improves

mutation scores, demonstrating its ability to guide the

generation of test cases that better identify and address

mutants. Furthermore, the resource utilization metrics

indicate that Harmony Search achieves this without

compromising on efficiency.

6. CONCLUSIONS

The amalgamation of the Harmony Search Algorithm

with mutation testing in the proposed method shows

promising results for systematic test case generation and

refinement in the context of the add function. The

iterative optimization of test cases through Harmony

463 International Journal for Modern Trends in Science and Technology

Search, coupled with mutation analysis of predefined

mutants ('Mutant1', 'Mutant2', 'Mutant3'), enhances the

robustness of the testing process. Throughout the

experiment, the algorithm effectively refines test cases,

dynamically adapts to mutant variations, and calculates

mutation scores. The termination criteria, based on

reaching a predefined satisfactory mutation score,

ensures controlled experimentation. While the method

demonstrates strengths in dynamic test case adjustment

and iterative refinement, further exploration is

warranted to fine-tune parameters and extend

evaluation across diverse scenarios. Future work should

consider comprehensive testing with a broader set of

mutants and complex functions for a more thorough

understanding of the method's effectiveness.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., &

Harman, M. (2019). Mutation testing advances: an analysis and

survey. In Advances in Computers (Vol. 112, pp. 275-378).

Elsevier, DOI: https://doi.org/10.1016/bs.adcom.2018.03.015.

[2] Pizzoleto, A. V., Ferrari, F. C., Offutt, J., Fernandes, L., & Ribeiro,

M. (2019). A systematic literature review of techniques and

metrics to reduce the cost of mutation testing. Journal of Systems

and Software, 157, 110388, DOI:

https://doi.org/10.1016/j.jss.2019.07.100.

[3] Mishra, D. B., Mishra, R., Acharya, A. A., & Das, K. N. (2019). Test

data generation for mutation testing using genetic algorithm.

In Soft Computing for Problem Solving: SocProS 2017, Volume

2 (pp. 857-867). Springer Singapore.

[4] Paiva, A. C., Restivo, A., & Almeida, S. (2020). Test case

generation based on mutations over user execution

traces. Software Quality Journal, 28, 1173-1186, DOI:

https://doi.org/10.1007/s11219-020-09503-4.

[5] Gadelha, M. R., Menezes, R. S., & Cordeiro, L. C. (2021). ESBMC

6.1: automated test case generation using bounded model

checking. International Journal on Software Tools for Technology

Transfer, 23, 857-861, DOI:

https://doi.org/10.1007/s10009-020-00571-2.

[6] Raamesh, L., Radhika, S., & Jothi, S. (2022). Generating optimal

test case generation using shuffled shepherd flamingo search

model. Neural Processing Letters, 54(6), 5393-5413, DOI:

https://doi.org/10.1007/s11063-022-10867-w.

[7] Mohd-Shafie, M.L., Kadir, W.M.N.W., Lichter, H. et

al. Model-based test case generation and prioritization: a

systematic literature review. Softw Syst Model 21, 717–753 (2022),

DOI: https://doi.org/10.1007/s10270-021-00924-8.

[8] Barboni, M., Morichetta, A., Polini, A., &Casoni, F. (2023).

ReSuMo: a regression strategy and tool for mutation testing of

solidity smart contracts. Software Quality Journal, 1-29, DOI:

https://doi.org/10.1007/s11219-023-09637-1.

[9] Li, Y., Feng, Y., Guo, C., Chen, Z., & Xu, B. (2023). Crowdsourced

test case generation for android applications via static program

analysis. Automated Software Engineering, 30(2), 26, DOI:

https://doi.org/10.1007/s10515-023-00394-w.

[10] Ghiduk, A. S., & Alharbi, A. (2023). Generating of Test Data by

Harmony Search Against Genetic Algorithms. Intelligent

Automation & Soft Computing, 36(1), DOI:

https://doi.org/10.32604/iasc.2023.031865.

[11] Kumar, H., Shukla, R., Gautam, P. K., Tiwari, M., & Saxena, V.

(2023). Generation of Test Cases for Identification of Crime

against Women through HLR and VLR. Journal of Advances in

Mathematics and Computer Science, 38(12), 50-59, DOI:

https://doi.org/10.9734/jamcs/2023/v38i121857.

https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1007/s11219-020-09503-4
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/s11063-022-10867-w
https://doi.org/10.1007/s10270-021-00924-8
https://doi.org/10.1007/s11219-023-09637-1
https://doi.org/10.1007/s10515-023-00394-w
https://doi.org/10.32604/iasc.2023.031865
https://doi.org/10.9734/jamcs/2023/v38i121857

