

114 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology, 7(01): 114-120, 2021

Copyright © 2021 International Journal for Modern Trends in Science and Technology

ISSN: 2455-3778 online
DOI: https://doi.org/10.46501/IJMTST070127
Available online at: http://www.ijmtst.com/vol7issue01.html

Human Face Generation using Deep

Convolution Generative Adversarial Network

Chaudhary Sarimurrab1 | Ankita Kesari2 | Naman3 | Sudha Narang4

1B.Tech Scholar, Department of CSE, Maharaja Agrasen Institute of Technology, Delhi, India
2B.Tech Scholar, Department of CSE, Maharaja Agrasen Institute of Technology, Delhi, India
3B.Tech Scholar, Department of CSE, Maharaja Agrasen Institute of Technology, Delhi, India
4Assistant Professor, Department of CSE, Maharaja Agrasen Institute of Technology, Delhi,India

To Cite this Article
Chaudhary Sarimurrab, Ankita Kesari, Naman and Sudha Narang, “Human Face Generation using Deep Convolution
Generative Adversarial Network”, International Journal for Modern Trends in Science and Technology, Vol. 07, Issue 01,
January 2021, pp.- 114-120.

Article Info
Received on 18-December-2020, Revised on 02-January-2021, Accepted on 08-January-2021, Published on 17-January-2021.

The Generative Models have gained considerable attention in the field of unsupervised learning via a new

and practical framework called Generative Adversarial Networks (GAN) due to its outstanding data

generation capability. Many models of GAN have proposed, and several practical applications emerged in

various domains of computer vision and machine learning. Despite GAN's excellent success, there are still

obstacles to stable training. In this model, we aim to generate human faces through un-labelled data via the

help of Deep Convolutional Generative Adversarial Networks. The applications for generating faces are vast

in the field of image processing, entertainment, and other such industries. Our resulting model is successfully

able to generate human faces from the given un-labelled data and random noise.

KEYWORDS: Generative Models, Face Generations, Deep Convolutional Generative Adversarial Network

I. INTRODUCTION

Generative Networks have collected a high

quantity of attention within the field of learning

that's unattended. GaN is that the most complex

method in generative learning. This can be

achieved through Generative Adversarial

Networks. On paper, GAN takes a supervised

learning approach to try and do unattended

learning by generating pretend or artificial trying

information. Generative Adversarial Networks

gives a welcome to learn deep convolution while

not extremely bounded information. They come

through this deed associated opposing methods

between 2 pairs of networks who fight with each

other. To tackle, there are many some generative

models that are planned. one amongst them is

DC-GAN or Deep Convolution Gan. Deep

Convolutional Gan may be a known form of GANs

that uses convolutional layers that are absolutely

connected. DCGAN is that the form of GAN model

that's getting used here. The first goal of our

project is to get faces with latent vectors or random

noise. The essence of GAN is summated as

coaching of 2 networks at the same time known as

the generator network denoted by G and also the

individual network indicated by D. D is truly a

individual that follow its own methodology to

classify original pictures as real. In qualification, G

ABSTRACT

https://doi.org/10.46501/IJMTST070127
http://www.ijmtst.com/vol7issue01.html
https://doi.org/10.46501/IJMTST070127

115 International Journal for Modern Trends in Science and Technology

could be a generator and creates pictures and

attempts to deceive the individual by generating

somewhat real information. These 2 networks

section themselves, and eventually, G produces

realistic information, and D gets higher to predict

the pretend ones The representations which will be

learned by GANs additionally be utilized in a scope

of uses, along with picture amalgamation,

phonetics picture piece of writing, vogue transfer,

image super-resolution, and classification. much,

GAN has introduced several applications like

hand-written font generation, image mixing, image

in-painting, face aging, text synthesis, human

create synthesis, script applications, image

manipulation applications, visual salience

prediction, object detection, 3D image synthesis,

medical application, facial makeup transfer, facial

landmark d1 detection, image super-resolution,

texture synthesis, sketch synthesis,

image-to-image translation, face frontal read

generation, language and speech synthesis, music

generation, video applications in laptop vision and

graphics communities.

II. LITERATURE SURVEY

Generative models (GM) are a quickly propelling

examination region of image vision problems.

Generative models are the traditional models for

unaided realizing where given preparing

information ~ p-data(x) from an obscure

information producing appropriation creates new

examples information ~ p-model(x) from a similar

dissemination. The ultimate objective of any GM is

to draw comparable information tests (p-model(x)

from the inclined genuine information conveyance

p-data(x).

Generative Adversarial Networks (GAN), a robust

network used for unsupervised machine learning

to build a min-max game between two-player, i.e.,

setting up both the player (networks) with their

different objectives. One player is known as the

generator network(G), and the other is known as

the discriminator network (D). The first player (G)

attempts to trick the second player (D) by creating

exceptionally common-looking true pictures from

arbitrary idle vector z, and the second player (D)

improves in-recognizing genuine and produced

information. Both the organizations attempt to

streamline themselves in the most ideal manner to

achieve the individual goals on the grounds that

both have their goal capacities, i.e., D needs is to

expand its cost worth, and G needs to limit its cost

esteem is given as given below:

Another class of convolutional neural

organizations (CNN) [16] called Deep Convolutional

GAN (DCGAN). DCGAN was the principal structure

that rehearsed de-convolutional neural

organizations (de-CNN) foundational layout that

altogether balances out GAN preparing. These

systems comprise of two organizations; one

organization fills in as a CNN called the generator,

and the other organization functions as a de-CNN

called discriminator. A recently proposed class of

design limitations remembered for CNN

engineering is:

— Remove all degrees of pooling layers with step

convolutions.

— Both G and D should utilize Batch

Normalization (BN) [192].

— Use ReLU and Leaky-ReLU in the generator

and the discriminator organizations, separately..

We will discuss pdftotext, tesseract and tesseract4.

III. METHODOLOGY

The project started by breaking down into a series

of sub-parts from data loading using data loader to

defining and training the adversarial networks.

In this project, we have used the Celeba dataset in

which there are approx 30,000 celebrities face

images. We used Pytorch, PyTorch is an

open-source machine learning library based on the

Torch library, used for applications such as

computer vision and natural language processing,

In the first step, we loaded the data into the train

loader. To load the data we first defined our

transformation for all images. In transformation,

we defined image size, which we kept 32*32. So

that all images have the same size to work on. The

second transformation definition is a center crop

so that we have exact feature values. Transforms

are common image transformations. We chained

together these transforms using Pytorch Compose.

Then we have applied these transform to the data

set using the image folder function which takes

two arguments, one is data and the other is

transform definition.

116 International Journal for Modern Trends in Science and Technology

At last, during the train loader, we divided the data

set into batches of 20. So that we can train faster

and also can look through the training process.

Now next step we took is defining the architecture

of both the model discriminator and generator.

We are using the DC GAN technique which is

based on CNN architecture. CNN’s are used for

image classification and recognition because of

their high accuracy. It was proposed by computer

scientist Yann LeCun in the late 90s when he was

inspired by the human visual perception of

recognizing things. The CNN follows a hierarchical

model that works on building a network, like a

funnel, and finally gives out a fully-connected layer

where all the neurons are connected to each other

and the output is processed.In the discriminator

model, we have defined our first convolution layer

in which input to layer is an image of 3 channels

(RGB channel). And after that 32 is the dimension

of the convolution layer. In other words, we are

applying 32 kernels to an input image or

convolving to an input image. The filter size or

convolution kernel size is 4*4 which going to divide

the x-axis and y-axis of the image by a factor of 4.

Then we have used a stride of 2*2. Which will move

with 2 steps during the convolution process. And

also we set bias = False otherwise will deviate from

zero.

Conv2d(3, 32, kernel_size=(4, 4), stride=(2, 2),

padding=(1, 1), bias=False)

 The next layer is also a convolution layer in which

input channels are 32 and output channels are 64.

And also filter size or convolution kernel size is 4*4

which going to divide the x-axis and y-axis of the

image by a factor of 4. Then we have used a stride

of 2*2. Which will move with 2 steps during the

convolution process same as before.

Conv2d(32, 64, (4, 4) – size of filter, stride=(2, 2),

padding=(1, 1), bias set to Fasle)

Then we used the batch normalization, Batch

normalization is a technique for training very deep

neural networks that standardizes the inputs to a

layer for each mini-batch. This has the effect of

stabilizing the learning process and dramatically

reducing the number of training epochs required

to train deep networks. It does this scaling the

output of the layer, specifically by standardizing

the activations of each input variable per

mini-batch, such as the activations of a node from

the previous layer. Recall that standardization

refers to rescaling data to have a mean of zero and

a standard deviation of one, e.g. a standard

Gaussian.

The next layer is also a convolution layer in which

input channels are 64 and output channels are

128. And also filter size or convolution kernel size

is 4*4 which going to divide the x-axis and y-axis of

the image by a factor of 4. Then we have used a

stride of 2*2. Which will move with 2 steps during

the convolution process same as before. Then

again we used the batch normalization layer .

BatchNorm impacts network training in a

fundamental way: it makes the landscape of the

corresponding optimization problem be

significantly more smooth. This ensures, in

particular, that the gradients are more predictive

and thus allow for use of larger range of learning

rates and faster network convergence.

Then after we defined the one fully connected layer

which takes the input size of 2048 and gives the

output of 1 feature. Then we applied sigmoid

function to output of full connected layer. The

main reason why we use sigmoid function is

because it exists between (0 to 1). Therefore, it is

especially used for models where we have to

predict the probability as an output. Since

probability of anything exists only between the

range of 0 and 1, sigmoid is the right choice. The

function is differentiable. And we also used

dropout with 0.5 probability.

Dropout is where arbitrarily chose neurons are

overlooked during preparation. They are "excited"

haphazardly. This implies that their commitment

to the actuation of downstream neurons is

transiently eliminated on the forward pass and any

weight refreshes are not applied to the neuron on

the retrogressive pass.

As a neural organization learns, neuron loads

subside into their setting inside the organization.

Loads of neurons are tuned for explicit highlights

giving some specialization. Neighboring neurons

become to depend on this specialization, which

whenever taken excessively far can bring about a

delicate model excessively specific to the

preparation information. This dependent on

setting for a neuron during preparing is alluded to

117 International Journal for Modern Trends in Science and Technology

as intricate co-transformations. You can envision

that if neurons are arbitrarily exited the

organization during preparing, that other neuron

should step in and handle the portrayal needed to

make forecasts for the missing neurons. This is

accepted to bring about various autonomous inner

portrayals being found out by the organization.

The impact is that the organization turns out to be

less touchy to the particular loads of neurons. This

thus brings about an organization that is prepared

to do better speculation and is less inclined to

overfit the preparation information.

The Complete Discriminator architecture is

Discriminator(

 (cnv1): Sequential(

 (0): Conv2d(3 – input size, 32 – number of filters,

(4, 4) – the size of filters, (2, 2) – stride for

compression, 1, 1) – of padding for corner pixel

values, bias set to False)

)

 (cnv2): Sequential(

 (0): Conv2d(32 – input size, 64– number of

filters, (4, 4) – the size of filters, (2, 2) – stride for

compression, 1, 1) – of padding for corner pixel

values, bias set to False)

 (1): BatchNorm2d(64, eps=1e-05,

momentum=0.1, affine=True,

track_running_stats=True)

)

 (cnv3): Sequential(

 (0): Conv2d(64, 128, kernel_size=(4, 4) , (2, 2) –

stride for compression, 1, 1) – of padding for corner

pixel values, bias set to Fasle)

 (1): BatchNorm2d(128, eps=1e-05,

momentum=0.1, affine=True,

track_running_stats=True)

)

 (fcl): Linear(in_features=2048, out_features=1,

bias=True)

 (out): Sigmoid()

 (dropout): Dropout(p=0.5, inplace=False)

)

Presently next we characterized the engineering of

the generator. It is actually equivalent to a

discriminator yet in a contrary manner. We have

utilized Transposed Convolutions for that. Exactly

when we're deciphering convolutions we change

the solicitation for the estimations in this

convolution action organization, which has

interesting effects and prompts different practices

to the conventional convolutions. At times we see

this activity alluded to as a 'deconvolution' yet they

are not the same. A deconvolution endeavors to

invert the impacts of a convolution. Albeit

rendered convolutions can be utilized for this, they

are more adaptable. Other legitimate names for

rendered convolutions we may find in the wild are

'partially stridden convolutions' and 'up

convolutions'.We utilize normal convolutions to

pack the info information into a theoretical spatial

portrayal, and afterward utilize translated

convolutions to decompress the theoretical

portrayal into something of utilization. A

convolutional auto-encoder is entrusted with

reproducing its information picture, subsequent to

going halfway outcomes through a 'bottleneck' of

restricted size. Employments of auto-encoders

incorporate pressure, commotion evacuation,

colorization, and in-painting. Achievement relies

upon having the option to learn dataset-explicit

pressure in the convolution parts and

dataset-explicit decompression in the rendered

convolution pieces. The boundary we utilizing here

is equivalent to Discriminator.

The final generator architecture is

Generator(

 (fcl): Linear (100 – input size, 2048 – output size,

bias set to true)

 (dcnv1): Sequential(

 (0): ConvTr2d(128 – input size, 64 – number of

filters , (4, 4) – the size of filters, (2, 2)) – stride for

compression, (1, 1) – of padding for corner pixel

values, bias set to Fasle)

118 International Journal for Modern Trends in Science and Technology

 (1): BatchNorm2d(64, eps=1e-05,

momentum=0.1, affine=True,

track_running_stats=True)

)

 (dcnv2): Sequential(

 (0): ConvTranspose2d(64– input size, 32–

number of filters, (4, 4)) – the size of filters, (2, 2) –

stride for compression, (1, 1) – of padding for

corner pixel values, bias set to False)

 (1): BatchNorm2d(32, eps=1e-05,

momentum=0.1, affine=True,

track_running_stats=True)

)

 (dcnv3): Sequential(

 (0): ConvTranspose2d(32– input size, 3–

number of filters, (4, 4) – the size of filters, (2, 2) –

stride for compression, (1, 1) – of padding for

corner pixel values, bias set to False)

)

 (dropout): Dropout(p=0.5, inplace=False)

)

At that point the subsequent stage is

characterizing the misfortune work without a

doubt and phony misfortune. We have utilized

BCEWithLogitsLoss. This misfortune joins a

Sigmoid layer and the BCELoss in one single class.

This adaptation is more mathematically stable

than utilizing a plain Sigmoid followed by a

BCELoss as, by consolidating the activities into

one layer, we exploit the log-total exp stunt for

mathematical solidness. We characterized

counterfeit name as zero and genuine mark as 1 to

recognize the picture and figure the misfortune

during the feedforward and backpropagation. We

additionally not utilizing precisely 1 incentive as a

mark for the genuine names. We utilized a 0.9

incentive for smoothening the yield.

Adam is an advanced calculation that can be

utilized rather than the traditional stochastic angle

plunge methodology to refresh network loads

iterative dependent on preparing information.

Adam was introduced by Diederik Kingma from

OpenAI and Jimmy Ba from the University of

Toronto in their 2015 ICLR paper (banner) named

"Adam: A Method for Stochastic Optimization". We

referred to liberally from their paper in this post

aside from whenever communicated something

different.

Adam is a substitution advancement calculation

for stochastic slope plummet for preparing

profound learning models. Adam consolidates the

best properties of the AdaGrad and RMSProp

calculations to give an enhancement calculation

that can deal with inadequate slopes on boisterous

issues. Adam is moderately simple to design where

the default arrangement boundaries excel on most

issues.

We used alpha 0.0005 also referred to as the

learning rate or step size. We used beta1 0.1, the

exponential decay rate for the first moment

estimates beta2 0.99, the exponential decay rate

for the second-moment estimates. The next step is

the training of the whole Deep Convolution Neural

Network. It is a two-step process where we train

both our discriminator and generator. Firstly, we

train our discriminator by using real images. The

dataset that is used here is the celebA dataset.

The pictures in this dataset cover huge posture

varieties and foundation mess. CelebA has

enormous varieties, huge amounts, and rich

comments. The real images are passed through the

discriminator where it learns that this is how real

images look like. And generates a real loss for the

said images Next during the first pass training

random noise is passed through the generator

where it generates fake images from it that are to

be passed through the discriminator. A key point

here is that these are images have exactly the size

or dimensions as the input capacity of the

discriminator. The discriminator then generates

the loss for these fake images which is known as

fake loss. The next step is to add these real and

fake losses to do backpropagation. It is the

strategy for adjusting loads of a neural net

dependent on the mistake rate got in the past age.

When we backpropagate we update the filter and

weights of the fully connected layers based on the

calculated losses.

The next step in training is generator training.

It is trained by passing latent vectors or random

noise through a generator from which it generates

fake images which are then passed through the

discriminator but this time it generates a loss for

119 International Journal for Modern Trends in Science and Technology

fake images using flipped labels. The same

backpropagation process is then repeated to finish

the training.

All this training is done multiple times in the form

of epochs. An epoch is essentially nothing but an

iteration of the training cycle.

IV. RESULTS

After running 150 epochs of the network the

following results have been gathered

1. Average and minimum loss after 150 epochs:

Avg Loss of Discriminator: 0.944

Avg Loss of Generator: 2.140

Minimum Loss of Disc: 0.54910

Minimum Loss of Gen:0.54958

2. PSNR value graph of 4 samples out of 16

Fig1. Psnr of 4 samples

3. Average PSNR value graph

Fig2. Average Psnr

4. Image samples after 10 epochs

Fig3. Image samples after 10 epochs

5. Image samples after 50 epochs

Fig4. Image samples after 50 epochs

6. Image samples after 100 epochs

Fig5. Image samples after 100 epochs

7. Image Samples after 150 epochs

Fig6. Image samples after 150 epochs

120 International Journal for Modern Trends in Science and Technology

VI. FUTURE SCOPE AND CONCLUSION

 The boom in interest in GANs is not only because

of their ability to transform latent data into

meaningful information but it is also because of

their potential to generate large amount of results

with unlabelled data. Using this ability, we have

prepared a generative model that learns from an

existing dataset and expands upon it. Our model

uses celebA dataset and uses it to train the

discriminator and generator.

Which produces the desired image data. There are

many oppurtunities to use this kind of procedure

to expand upon existing datasets naturally.

REFERENCES

[1] Generative Adversarial NetworkIan J. Goodfellow, Jean

Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua

Bengio 2014.

[2] Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks Alec

Radford, Luke Metz, Soumith Chintala 2016

[3] Generative Adversarial Networks: An Overview Antonia

Creswell , Tom White, Vincent Dumoulin , Kai

Arulkumaran§ , Biswa Sengupta and Anil A Bharath§ ,

Member IEEE BICV Group, Dept. of Bioengineering,

Imperial College London. School of Design, Victoria

University of Wellington, New Zealand MILA, University of

Montreal, Montreal H3T 1N8 Cortexica Vision Systems

Ltd., London, United Kingdom 2017

[4] A NOTE ON THE EVALUATION OF GENERATIVE MODELS

Lucas Theis, Aaron van den Oord ,Matthias Bethge 2016

[5] Z. Pan, W. Yu, X. Yi1, A. Khan, F. Yuan, and Y. Zheng,

"Recent progress on generative adversarial networks

(GAN): A survey," IEEE Access, vol. 7, pp. 36322–36333,

2019.

[6] Creswell, T. White, V. Dumoulin, K. Arulkumaran, B.

Sengupta, and A.A. Bharath, ―Generative adversarial

networks: An overview,‖ IEEE Signal Processing Magazine,

vol. 35, no. 1, pp. 53– 65, 2018

[7] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye,‖ A Review on

Generative Adversarial Networks: Algorithms, Theory, and

Applications,‖ arXiv preprint arXiv: 2001.06937, 2020.

[8] Z. Wang, Q. She, and T.E. Ward, ―Generative Adversarial

Networks: A Survey and Taxonomy,‖ arXiv preprint arXiv:

1906.01529, 2019.

[9] L. Tran, X. Yin, and X. Liu, ―Disentangled representation

learning gan for pose-invariant face recognition,‖ in IEEE

Conference on Computer Vision and Pattern Recognition,

2017.

