

53 International Journal for Modern Trends in Science and Technology

Volume: 2 | Issue: 09 | September 2016 | ISSN: 2455-3778 IJMTST

An FPGA Based Floating Point

Arithmetic Unit Using Verilog

T. Ramesh1 | G. Koteshwar Rao2

1PG Scholar, Vaagdevi College of Engineering, Telangana.
2Assistant Professor, Vaagdevi College of Engineering, Telangana.

Floating Point (FP) multiplication is widely used in large set of scientific and signal processing computation.

Multiplication is one of the common arithmetic operations in these computations. A high speed floating point

double precision multiplier is implemented on a Virtex-6 FPGA. In addition, the proposed design is compliant

with IEEE-754 format and handles over flow, under flow, rounding and various exception conditions. The

design achieved the operating frequency of 414.714 MHz with an area of 648 slices.

KEYWORDS: Double precision, Floating point, Multiplier, FPGA, IEEE-754.

Copyright © 2016 International Journal for Modern Trends in Science and Technology

All rights reserved.

I. INTRODUCTION

 The real numbers represented in binary format

are known as floating point numbers. Based on

TEEE-754 standard, floating point formats are

classified into binary and decimal interchange

formats. Floating point multipliers are very

important in DSP applications.

This paper focuses on double precision

normalized binary interchange format. Figure I

shows the TEEE-754 double precision binary

format representation. Sign (S) is represented with

one bit, exponent (E) and fraction (M or Mantissa)

are represented with eleven and fifty two bits

respectively. For a number is said to be a

normalized number, it must consist of'one' in the

MSB of the significant and exponent is greater than

zero and smaller than 1023. The real number is

represented by equations (I) & (2).

Figurel. TEEE-754 double precision floating point format

 Value= -1S × M × 2E

Floating point implementation on FPGAs has been

the interest of many researchers. In [I], an

TEEE-754 single precision pipelined floating point

multiplier is implemented on multiple FPGAs (4

Actel AI280). Nabeel Shirazi, Walters, and Peter

Athanas implemented custom 16/18 bit three

stage pipelined floating point multiplier, that

doesn't support rounding modes [2]. L.Louca,

T.A.Cook, W.H. Johnson [3] implemented a single

precision floating point multiplier by using a

digit-serial multiplier and Altera FLEX 8000. The

design achieved 2.3 MFlops and doesn't support

rounding modes. In [4], a parameterizable floating

point multiplier is implemented using five stages

pipeline, Handel-C software and Xilinx XCYIOOO

FPGA.The design achieved the operating frequency

of 28MFlops. The floating point unit [5] is

implemented using the primitives of Xilinx Yirtex IT

FPGA. The design achieved the operating frequency

of 100 MHz with a latency of 4 clock cycles.

Mohamed AI-Ashraf}', Ashraf Salem, and Wagdy

Anis [6] implemented an efficient TEEE-754 single

precision floating point multiplier and targeted for

Xilinx Yirtex-5 FPGA. The multiplier handles the

overflow and underflow cases but rounding is not

implemented. The design achieves 30 I MFLOPs

with latency of three clock cycles. The multiplier

was verified against Xilinx floating point multiplier

core.

ABSTRACT

54 International Journal for Modern Trends in Science and Technology

An FPGA Based Floating Point Arithmetic Unit Using Verilog

II. FLOATING POINT MULTIPLICATION ALGORITHM

Multiplying two numbers in floating point format

is done by

1. Adding the exponent of the two numbers then

subtracting the bias from their result.

2. Multiplying the significant of the two numbers

3. Calculating the sign by XORing the sign of the

two numbers.

In order to represent the multiplication result as

a normalized number there should be I in the MSB

of the result (leading one).

The following steps are necessary to multiply

two floating point numbers.

The following steps are necessary to multiply

two floating point numbers.

1. Multiplying the significant i.e. (I.MI * I.M2)

2. Placing the decimal point in the result

3. Adding the exponents i.e. (E I + E2 - Bias)

4. Obtaining the sign i.e. sl xor s2

5. Normalizing the result i.e. obtaining I at

the MSB of the results "significand"

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

III. IMPLEMENTATION OF DOUBLE PRECISION

FLOATING POINT MULTIPLIER

In this paper we implemented a double precision

floating point multiplier with exceptions and

rounding. Figure 2 shows the multiplier structure

that includes exponents addition, significand

multiplication, and sign calculation. Figure 3

shows the multiplier, exceptions and rounding that

are independent and are done in parallel.

Figure 3. Multiplier structure with rounding and exceptions

A. Multiplier

The black box view of the double precision

floating point multiplier is shown in figure 4.The

Multiplier receives two 64-bit floating point

numbers. First these numbers are unpacked by

separating the numbers into sign, exponent, and

mantissa bits. The sign logic is a simple XOR. The

exponents of the two numbers are added and then

subtracted with a bias number i.e., 1023. Mantissa

multiplier block performs multiplication operation.

After this the output of mantissa division is

normalized, i.e., if the MSB of the result obtained is

not I, then it is left shifted to make the MSB I. If

changes are made by shifting then corresponding

changes has to be made in exponent also.

The multiplication operation is performed in the

module (fJ:lU_mul). The mantissa of operand A

and the leading 'I' (for normalized numbers) are

stored in the 53-bit register (mul_a). The mantissa

of operand Band the leading' I' (for normalized

numbers) are stored in the 53-bit register (mul_b).

Multiplying all 53 bits of mul_a by 53 bits of mul_b

would result in a 106-bit product. 53 bit by 53 bit

multipliers are not available in the most popular

Xilinx and Altera FPGAs, so the multiply would be

broken down into smaller multiplies and the

results would be added together to give the final

106-bit product. The module (fJ:lU_mul) breaks up

the multiply into smaller 24-bit by 17-bit

multiplies. The Xilinx Virtex-6 device contains

DSP48E I slices with 25 by 18 twos complement

multipliers, which can perform a 24-bit by 17-bit

unsigned multiply.

The breakdown of the multiply in module

(fJ:lU_mul) is broken up as follows
product_a = mul_a[23:0] * mul_b[16:0]

product_b= mul_a[23:0] * mul_b[33:17]

55 International Journal for Modern Trends in Science and Technology

Volume: 2 | Issue: 09 | September 2016 | ISSN: 2455-3778 IJMTST

product_c= mul_a[23:0] * mul_b[50:34]

product_d =mul_a[23:0] * mutb[52:51]

product_e= mul_a[40:24] * mul_b[16:0]

productj= mul_a[40:24] * mutb[33:17]

product_g= mul_a[40:24] * mul_b[52:34]

product_h = mul_a[52:41] * mul_b[16:0]

product_i =mul_a[52:41] * mul_b[33:17]

productj =mul_a[52:41] * mul_b[52:34]

Figure 4. Black box view of floating point double precision

multiplier

The products (a-j) are added together, with the

appropriate offsets based on which part of the

mul_a and mul_b arrays they are multiplying.

fields of operands A and B are added together and

then the value (1023) is subtracted from the sum of

A and B. If the resultant exponent is less than 0,

then the (product) register needs to be right shifted

by the amount. This value is stored in register

(exponent_under). The final exponent of the output

operand will be 0 in this case, and the result will be

a denormalized number. If exponent_under is

greater than 52, then the mantissa will be shifted

out of the product register, and the output will be

0, and the "underflow" signal will be asserted. The

mantissa output from the (fJ:lU_mul) module is in

56-bit register (product_7). The MSB is a leading '0'

to allow for a potential overflow in the rounding

module. The first bit '0' is followed by the leading 'I'

for normalized numbers, or '0' for denormalized

numbers. Then the 52 bits of the mantissa follow.

Two extra bits follow the mantissa, and are used for

rounding purposes. The first extra bit is taken from

the next bit after the mantissa in the 106-bit

product result of the multiply. The second extra bit

is an OR of the 52 LSB's of the 106-bit product

B. Rounding and Exceptions

The IEEE standard specifies four rounding modes

round to nearest, round to zero, round to positive

infinity, and round to negative infmity. Table 1

shows the rounding modes selected for various bit

combinations of rmode. Based on the rounding

changes to the mantissa corresponding changes

has to be made in the exponent part also.

Table!: Rounding modes selected for various bit

combinations of rmode

Bit combination Rounding Mode

00 round-nearest-even

01 round to zero

10 round_up

\I round down

In the exceptions module, all of the special

cases are checked for, and if they are found, the

appropriate output is created, and the individual

output signals of underflow, overflow, inexact,

exception, and invalid will be asserted if the

conditions for each case exist.

IV. RESULTS

The double precision floating point multiplier

design was simulated in Modelsim 6.6c and

synthesized using Xilinx ISE 12.2i which was

mapped on to Virtex-6 FPGA. The simulation

results of 64-bit floating point double precision

multiplier are shown in figure 5. The 'opa' and 'opb'

are the inputs and 'out' is the output. Table 2

shows the device utilization for implementing the

circuit on Virtex-6 FPGA. Table 3 shows the timing

summary of double precision floating point

multiplier. Table 4 shows the area and operating

frequency of double preCISIOn floating point

multiplier, Single precision floating point multiplier

[6] and Xilinx core respectively. M.AI-AshrafY,

A.Salem and W.Anis [6] implemented single

precision floating point multiplier and it occupies

an area of 604 slices and it's operating frequency is

301.114 MHz. Where as in case of XiIinx core, it

occupies an area of 266 slices and it's operating

frequency is 221.484 MHz. So the implemented

design provides high operating frequency with

more accuracy.

56 International Journal for Modern Trends in Science and Technology

An FPGA Based Floating Point Arithmetic Unit Using Verilog

Table2: Device utilization summary (Virtex -6vlx75ttl484-3)

of double precision floating point multiplier

Logic Utilization Used

Number of slice registers

(Flip-Flops) 1,998

Number of slice LUTs 2,181

Number of occupied slices 648

Number of bonded lOBs 203

Table 3: Timing summary of double precision floating point

multiplier

Parameter Valne

Minimum period (ns) 2All

Maximum Frequency (MHz) 414.714

Figure 5. Simulation results of double precision floating point multiplier

Table 4: Area and operating frequency of double precision

floating point multiplier, single precision floating point

multiplier [6] and Xilinx core

Present

Work M.AI-Ashrafy, A.Salem and Xilinx Core

 W.Anis l6J

Device

paramete

rs
Double

Precision Single precision

Single

Precision

No. of
slices 648 604 266

V. CONCLUSION

The double precision floating point multiplier

supports the LEEE-754 binary interchange format,

targeted on a Xilinx Virtex-6 xc6vlx75t-3ff484

FPGA. The design achieved the operating

frequency of 414.714 MFLOPs with area of 648

slices. The implemented design is verified with

single precision floating point multiplier [6] and

Xilinx core, it provides high speed and supports

double precision, which gives more accuracy

compared to single precession. This design

handles the overflow, underflow, and truncation

rounding mode

REFERENCES

[1] B. Fagin and C. Renard, "Field Programmable Gate

Arrays and Floating Point Arithmetic," IEEE

Transactions on VLS1, vol. 2, no. 3,pp. 365-367,

1994.

[2] N. Shirazi, A. Walters, and P. Athanas, "Quantitative

Analysis of Floating Point Arithmetic on FPGA Based

Custom Computing Machines," Proceedings of the

IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM"95),pp.155-162, 1995.

[3] L. Louca, T. A. Cook, and W. H. Johnson,

"Implementation of IEEE Single Precision Floating

Point Addition and Multiplication on FPGAs,"

Proceedings of 83rd IEEE Symposium on FPGAs for

57 International Journal for Modern Trends in Science and Technology

Volume: 2 | Issue: 09 | September 2016 | ISSN: 2455-3778 IJMTST

Custom Computing Machines (FCCM"96),pp.

107-116,1996.

[4] A. Jaenicke and W. Luk, "Parameterized

Floating-Point Arithmetic on FPGAs", Proc. of IEEE

lCASSP, 2001,vol. 2, pp. 897-900.

[5] B. Lee and N. Burgess, "Parameterisable

Floating-point Operations on FPG A," Conference

Record of the Thirty­ Sixth Asilomar Conference on

Signals, Systems, and Computers,2002.

[6] Mohamed AI-Ashraf)', Ashraf Salem, Wagdy Anis.,

"An Efficient Implementation of Floating Point

Multiplier ", Saudi International Electronics,

Communications and Photonics Conference

(SIECPC), pp. 1-5,24-26 April 2011.

