

A Simple Application of FMO Encoding in DSRC Applications

Sri Lakshmi Chandana¹ | D. Praveena Bhai²

^{1,2} Assistant Professor, Department of ECE, P V P Siddhartha Institute of Technology, Vijayawada, India.

A BA IN

ABSTRACT

The dedicated short-range communication (DSRC) system is the evolving technique used in the field of intelligent transport system (ITS) and Electronic Toll Collection (ETC). The DSRC standard employs FMO encoding techniques to obtain dc-balance and enhances signal reliability. The codeword structure of FMO, thus limiting the hardware potential of existing DSRC systems. Dedicated short-range communications are one-way or two-way short-range to medium-range wireless communication channels specifically designed for automotive use and a corresponding set of protocols and standards. The performance of this paper is evaluated on the simulation Using Xilinx. The maximum operation frequency is 900 MHz for FMO encodings. The power consumption is 1.14 mW at 900 MHz for FMO encoding. The encoding capability of this paper can fully support the DSRC standards of America, Europe, and Japan.

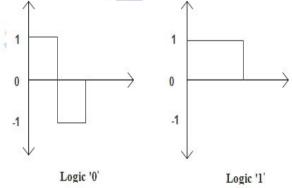
KEYWORDS: Dedicated short-range communication (DSRC), FMO, VLSI, intelligent transport system (ITS).

Copyright © 2016 International Journal for Modern Trends in Science and Technology All rights reserved.

I. INTRODUCTION

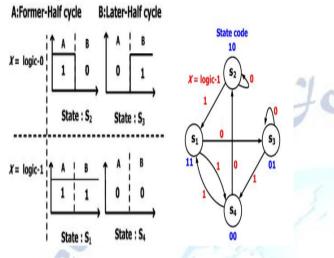
FMO technique is used to encode the data while transmit the signal through medium. Using FM0 coding, we developed the reused VLSI hardware architecture. Since, encoding plays the vital role in secured communication. Developing architecture for such encoding techniques is need of the hour. One sort of renowned and commonly used communication technique is DSRC (Dedicated Short Range Communication) which is designed support the variety of applications (Figure 1). Based on vehicular environments communication. DSRC, the subset RFID (Radio Frequency of Identification) for tracking and identification. DSRC standards adopts both FMO and Manchester encoding for signal reliability and dc balance.

CODING PRINCIPLES OF FM0:


The coding principles of FMO and Manchester encoder are discussed as follows,

A. FMO encoding

FMO encoding is also called as bi-phase space encoding scheme. In FMO encoding, the signal to be transmitted and done according, to the following rules, It inverts the phase of the base band signal at the boundary of each symbol.

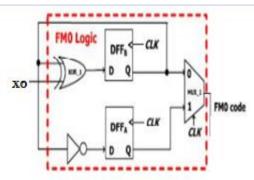

□ For representing logic '0' level, it inverts the signal at the mid of the symbol.

□ For representing logic '1' level, it constant voltage occupying an entire bit window

II. STATE CODE PRINCIPLE FOR FMO

The FMO code starts with the FSM principle. The FSM of FMO code classified into four states. The four states as shown in the below figure.

FSM of FM0 uppose the initial state is S1, and its state code is 11 for A and B, respectively.

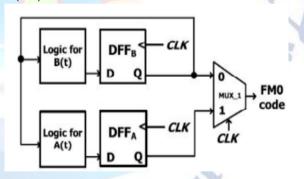

1) If the X is logic-0, the state-transition must follow both rules for FM01 and 3. The only one next-state that can satisfy both rules for the X of logic-0 is S3. If the X is logic-1, the statetransition must follow both rules for FM0 2 and 3. The only one next-state that can satisfy both rules for the X of logic-1 is S4. Thus, the state-transition of each state can be completely constructed. The FSM of FMO can also conduct the transition table of each state A(t) and B(t)represent the discrete-time state code of current-state at time instant t. Their previousstates are denoted as the A(t - 1) and the B(t - 1)1), respectively. With this transition table, the Boolean functions of A(t) and B(t) are given as

2) $A(t) = B(t - 1) B(t) = X \oplus B(t - 1)$

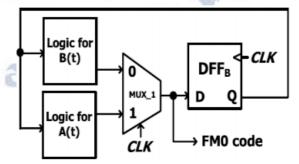
With both A(t) and B(t), the Boolean function of FMO code is denoted as CLK A(t) +~ CLK B(t)

Previous state		Cur	Current state			
A(t-1)	B(t-1)	A(t)		B(t)		
		X=	X=0 X=1		X=0 X=1	
1	1	0	0	1	0	
1	0	1	1	0	1	
0	1	1	0	1	1	
0	0	1	1	0	1	

III. HARDWARE ARCHITECTURE OF FMO CODE

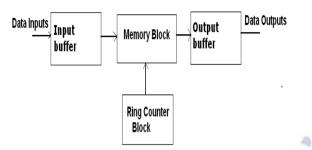

This is the hardware architecture of the fm0 code. In fm0 code the DFFA and DFFB are used to store the state code of the fm0 code and also mux_1 and not gate is used in the fm0 code. When the mode=0 is for the fm0 code.

AFMO ENCODER USING SOLS TECHNIQUE:


The SOLS technique is classified into two parts area compact retiming and balance logic operation sharing

A. area compact retiming

For fm0 the state code of the each state is stored into DFFA and DFFB the transition of the state code is only depends on the previous state of B(t-1) instead of the both A(t-1) and B(t-1).

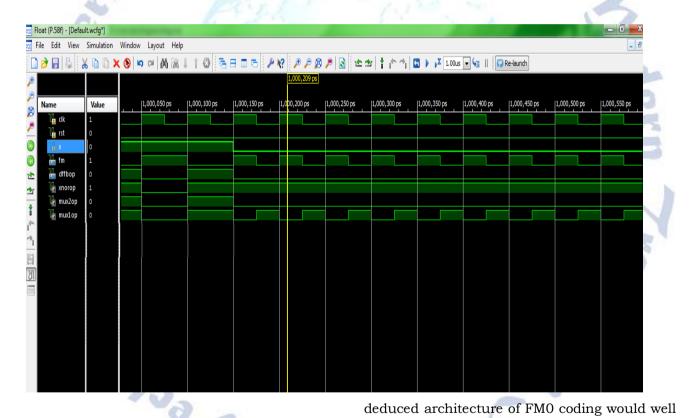


Area compact retiming

FMO encoding without area compact retiming The previous state is denoted as the A(t-1) and then the B(t-1).and then the current state is denoted as the A(t) and then the B(t)

IV. MEMORY ORGANIZATION

INPUT BUFFER:


The Input buffer is also commonly known as the input area or input block. When referring to computer memory, the input buffer is a location that holds all incoming information before it continues to the CPU for processing. Input buffer can be also used to describe various other hardware or software buffers used to store information before it is processed.

MEMORY BLOCK:

(RAM) Random-access memory (RAM) is a form of computer data storage. Today, it takes the form of integrated circuits that allow stored data to be accessed in any order (that is, at random). "Random" refers to the idea that any piece of data can be returned in a constant time, regardless of its physical location and whether it is related to the previous piece of data

RING COUNTER: A **ring counter** is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register.

V. SIMULATION RESULTS

VI. CONCLUSION

Using FM0 encoding techniques, hardware architecture is to be developed. FM0 coding are very popular code, as these codes are level insensitive, self-clocking and they provide signal absence detection and having the encoding clock rate embedded within the transmitted data. They encode the data as 1's and 0's. FM0 code is balance logic operation sharing along with clock gating technique. This

REFERENCES

support the DSRC standards.

- P. Benabes, A. Gauthier, and J. Ohman, "A Manchester code generator running at 1 GHZ", vol. III, Dec. 2003, pp.1156-1159.
- [2] J. Daniel, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, "Design of 5.9 GHz DSRC-based vehicular safety communication, "IEEE Wirele ss common. Mag.,vol. 13, no. 5, pp. 36–43, Oct. 2006.
- [3] M Ayoub Khan, Manoj Sharma, and R Brahmanandha Prabhu, "FSM based

Manchester encoder for UHF RFID Tag Emulator", Dec. 2008, pp.1-6.

- [4] A. Karagounis, A. Polyzos, B. Kotsos, and N. Assimakis, "A 90nm Manchester code generator with CMOS switches running at 2.4 GHz and 5 GHz," in Proc. 16th Int. Conf. Syst., Signals Image Process., Jun. 2009, pp. 1-4.
- [5] Yu-Cherng Hung, Min-Ming Kuo, Chiou-Kou Tung, and Shao-Hui Shieh, "High-Speed CMOS Chip Design for Manchester and Miller Encoder", Sep. 2009, pp.538-541. A 1
- [6] M Ayoub Khan, Manoj Sharma, and R Brahmanandha Prabhu, "FSM based FMO and Miller encoder for UHF RFID Tag Emulator", Mar. 2011, pp.1317-1322.
- [7] John B. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United States", vol. 99, July 2011, pp.1162-1182.
- [8] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnavake, B. Bellur, and S. Brovold, et al., "Vehicle safety communications—Applications (VSC-A) final report," U.S. Dept. Trans., Nat. Highway Traffic Safety Admin., Washington, DC, USA, Rep. DOT HS 810 591, Sep. 2011.
- [9] A Bletsas, J.Kimionis, A. G Dimitriou, and G. N Karystinos, "Single-Antenna Coherent Detection of Collided FMO RFID Signals", Feb. 2012, pp.756-766.
- [10] J.-H. Deng, F.-C. Hsiao, and Y.-H. Lin, "Top down design of joint MODEM and CODEC detection schemes for DSRC coded-FSK systems over high mobility fading channels," Jan. 2013, pp. 98-103.
- [11] Jim Lansford, John B. Kenney, and Peter Ecclesine, "Coexistence of Unlicensed Devices with DSRC Systems in the 5.9 GHz ITS Band", Dec. 2013, pp.9-16.
- [12] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Brovold, et al., "Vehicle safety communications—Applications (VSC-A) final report," U.S. Dept. Trans., Nat. Highway Traffic Safety Admin., Washington, DC, USA, Rep. DOT HS 810 591, Sep. 2011.
- Kenney, "Dedicated [13]J. В. short-range communications (DSRC) standards in the United States," Proc. IEEE, vol. 99, no. 7, pp. 1162-1182,Jul. 2011
- [14] J. Daniel, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich,"Design of 5.9 GHz DSRC-based vehicular safety communication,"IEEE Wireless Commun. Mag., vol. 13, no. 5, pp. 36-43, Oct. 2006.
- [15] P. Benabes, A. Gauthier, and J. Oksman, "A Manchester code generator running at 1 GHz," in Proc. IEEE, Int. Conf. Electron., Circuits Syst., vol. 3. Dec. 2003, pp. 1156-1159.
- [16] A. Karagounis, A. Polyzos, B. Kotsos, and N. Assimakis, "A 90nm Manchester code generator

with CMOS switches running at 2.4 GHz and 5 GHz," in Proc. 16th Int. Conf. Syst., Signals Image Process., Jun. 2009, pp. 1-4.

Authors

Ch. Sri lakshmi Received the M.Tech, Degree in Electronics and Communication Engineering in the Specialization of Embedded Systems(ES). From the Jawaharlal Nehru Technological University (JNTUK), Kakinada. He is currently working as an Assistant Professor in the Department of Electronics and

Communication, P.V.P. Siddhartha Institute of Technology, Vijayawada, INDIA.

D.Praveena Bhai Received the M.Tech, Degree in Electronics and Engineering Communication in the Specialization VLSI System of Design, from the Jawaharlal Nehru (JNTUK), University Technological Kakinada. She is currently working as an Assistant Professor in the

Department of Electronics and Communication, P. V.P. Siddhartha Institute of Technology, Vijayawada, INDIA.

