

Reliability analysis of percussive rotary drill bits in consideration with their failure modes

Bapanapalli Tejendra¹ | Rongala Suresh Swamy | Tanniru Raviteja¹ | Palla Manikanta¹ | Prakash S¹

¹Department of Mining Engineering, Godavari Institution Engineering and Technology (A),Rajahmundry, Andhra Pradesh, India

To Cite this Article

Bapanapalli Tejendra, Rongala Suresh Swamy, Tanniru Raviteja, Palla Manikanta, Prakash S, "Reliability analysis of percussive rotary drill bits in consideration with their failure modes", *International Journal for Modern Trends in Science and Technology* Vol. 09., Issue SI02, March, 2023, pp.-46-49

ABSTRACT

Efficient drilling is essential in rock drilling for the overall production. Drilling bits are the consumable elements in drilling process and their working hours in the field is important with respect economy. The reliability study of drilling bits is important as it indicates the overall effective production. The present study estimates the reliability of percussive drill bits based on failure hours. This study also study the best fit Regression model against the failure hours. The relevant data pertaining to this study has been collected from Granite mine. The outcome of this study is helpful to understand the different failure modes of drill bits and their bit life assessment with consideration of Compressive strength

KEYWORDS: Percussive Drill bits, Compressive strength, Bit failure mode, Drill bit life, Regression model, Anova Approach

Copyright © 2023 International Journal for Modern Trends in Science and Technology All rights reserved.

I. INTRODUCTION

Percussive rotary drilling is the most common drilling method is used for hard rock exploration and also for drilling blast holes. The drill consists of a bit (steel crown) with cemented carbide inserts. The dimensions of the steel crown varies with application and rock properties [1]. The Wear of WC (tungsten carbide) and cobalt (co) compositions used in the inserts of a drill bits is surveyed by Larsen-Basse.J. They addressed that the relationship between drilling variables and wear and the influence of structure and composition of the tungsten carbide-cobalt sintered alloy drill bits on their wear-resistance [2]. The new view and the understanding grates can hopefully be utilized for making better selections of cemented carbide grades based on local wear conditions and also for future development of new WC/Co grades, better adapted to the complex conditions of rock drilling. Liang et al. Through a detail analysis of the mechanical failures in the drilling rig encountered during construction in hard formations, key parts of the rotary drilling rig work rig were improved and improved, including the design of the removable compound

drive. The test results show that the improved percussive rotary drilling rig's construction efficiency and life are clearly increased [4]. The UCS of the rock is closely correlated with the bit life. The insert failure in percussive rotary drill bits is found to dominate the complete failure of the bit [5]. The present research presents the various modes of failure of percussive rotary drill bits in the Granite mine by the comprehensive study of the drill bit life time in the field, this study also determines the reliability of percussive rotary drill bits.

1.1 FAILURE MODES OF DRILL BITS

During drilling with percussive rotary drill machine the drill bit effected due to the following mechanical properties of the rock are hardness, strength, abrasiveness, structure of rock etc. the drill bit may tend fail in various modes, those are

- a) Button failure due to large radial force
- b) Twisted breakage failure
- c) Failure due to corrosion
- d) Buttons failure due to incorrect attachment with drill

Bapanapalli Tejendra, Rongala Suresh Swamy, Tanniru Raviteja, Palla Manikanta, Prakash S: **Reliability analysis of** percussive rotary drill bits in consideration with their failure modes

e) Failure due to worn out of crank body

Fig-1 Various Failure modes of drill bits

II. DATA COLLECTION

The study conducted over a period of 2 weeks to determine the drill bits life time and the data collected from the log books in records room of the mines and its failed drill bit in store room. By consulting field personnel of the mine and got sufficient data for this work. The collected data was interpreted in Regression model.

In this research work the drill bit data including life of drill bit, reasons for bit failure have been collected from the two adjacent granite mines situated in Andhra Pradesh. The collection of reliable data is always a challenge task. Thus in this study the drill bits life and various failures identified are collected with respect of working benches. The data collected from two adjacent granite mines of RL Puram of Cheemakurthy village which are located on the state highway SH 53 leading to Kanigiri from Ongole and is about 20 kilometres from Ongole town which is well connected by all-weather Road from Chennai and Hyderabad and is well connected by Train from Chennai. Mines are extended from East Longitude 79°50'16" and North latitude 15°35'08"and latitude 15°34'52" N to 15° 35' 3"N and Longitude 79°49'8"E to 79°49'26"E.

47International Journal for Modern Trends in Science and Technology

Fig 2 Testing of compressive strength of a granite sample using Schmidt hammer

Compressive strength of the rock is taken by using the Schmidt hammer which gives Reynolds number. By using the Schmidt hammer the compressive strength of granite rock tested in the sample collected in different benches. The Fig 2 shows the testing of compressive strength using Schmidt hammer in different samples collected from different benches.

The data collected from the mining location is given in Table 1.

Table 1: - List of drill bit life data in differentbenches

Sl. no	Type of drill bit	Drill bit numb er	Dri ll bit life in ho urs	Drilli ng depth in feet	Com pressi ve stren gth	Reason of failure bit	Locat ion of bit failur e	Ro ck typ e	Be nc h nu mb er
/	D. 11	RH10			12	High	Ore	Gr	
1	Butto	F611	24	590	0.6	hardness of	Benc	ani	13
	n bit	5J48			5	strata	h	te	
	1.1.1	RH11			12	Mechanical		Gr	
2	Butto	5M40	24.	600	1.3	wear and tear	Waste	ani	13
	n bit	124	3		2	of buttons	rock	te	
		SG24			11	Mechanical	P	Gr	
3	Butto	6J929	24	595	9.3	wear and tear	Ore	ani	15
5	n bit	045	21	575	3	of buttons	bench	te	15
		RV27			12	High	5	Gr	
4	Butto	4k810	26	620	2.5	hardness of	Ore	ani	16
-	n bit	68	20	020	6	strata	bench	te	10
		RS01			11	suata	1	Gr	
5	Butto	5N55	21	550	5.4	Presence of	Ore		17
5	n bit	355	21	550	2	joints in rock	bench	ani	17
					12	Mechanical	Waste	te	
	Butto	RV01	25	650	4.8			Gr	20
6	n bit	7J079	25	650		wear and tear	rock	ani	20
		60			4	of buttons	bench	te	
1.2	Butto	DG01	26.		13	High	Ore	Gr	21
7	n bit	7L32	8	660	5.5	hardness of	bench	ani	
		293			7	strata		te	
1	Butto	FJ812			12	Mechanical	Ore	Gr	
8	n bit	H385	28	690	9.1	wear and tear	bench	ani	23
	non	80			5	of buttons	oonen	te	
	Butto	RM0			12	High	Ore	Gr	
9	n bit	17T2	22	580	0.2	hardness of	bench	ani	24
	non	3550			0.2	strata	benen	te	
	Butto	SK01			12	Mechanical	Ore	Gr	
10	n bit	7V96	25	625	2.4	wear and tear	bench	ani	25
	n on	329			2.4	of buttons	bench	te	
	Butto	PK90	25		13	Mechanical	Ore	Gr	
11		6E60	25. 2	635	0.3	wear and tear		ani	26
	n bit	996	2		1	of buttons	bench	te	
	D. II	RH01	24		12	High	0	Gr	
12	Butto	7H94	24.	620	3.9	hardness of	Ore	ani	29
	n bit	326	6		9	strata	bench	te	

III. RESULTS AND DISCUSSIONS

3. 1 Determination of Correlation of matrix

A correlation matrix is simply a table displaying the correlation coefficients for various variables. A matrix displays the correlation between every possible pair of values in a table. It is a powerful tool for summarizing large datasets, identifying and visualizing patterns in the data. A correlation matrix consists of rows and columns representing variables. Each cell in the table contains a correlation coefficient. Table 2 represents the correlation coefficients for the three variables considered in this study.

Bapanapalli Tejendra, Rongala Suresh Swamy, Tanniru Raviteja, Palla Manikanta, Prakash S: **Reliability analysis of** percussive rotary drill bits in consideration with their failure modes

depth and Compressive strength					
	Drill bit life in hours	Drilling Depth in feet	Compressive strength (MPa)		
Drill bit life in hours	1				
Drilling Depth in feet	0.91591659	1			
Compressive strength (MPa)	0.79222657	0.81580575	1		

Table 2 Correlation between the drill bit life, Drilling

A correlation matrix table showing the correlation coefficient between different sets variables such as drill bit life in hours, drilling depth in feet's, compressive strength. The correlation matrix shows the positive values. The coefficient value is <1 is perfectly positive linear correlation and the coefficient value is =0 there is no linear correlation. From Table-2 it is observed that, the correlation between drill bit life hours and drilling depth in feet is highest as compared to other combinations. It also indicates that the life of drill bit greatly affected by drilling depth. The correlation matrix also suggests that the correlation between drill bit hours and compressive strength is high. The matrix shown in Table-2 also indicated some correlation between drilling depth and compressive strength, which should be verified by statistical method as logically there is no relation.

The figure 3 shows for regression analysis by taking the drilling depth in X-axis and drill bit life in hours in Y-axis. The linear equation obtained by the plotting the data in X-axis and Y-axis. The drill bit life data points were fitted against the best fit line by using a regression analysis. The goodness of fit value R^2 is 0.8389. The obtained results in the form of goodness of fit value also verify that the three were a good correlation between the two variables.

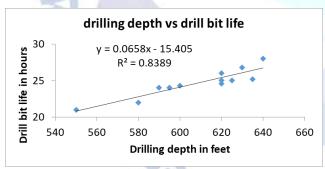


Fig-3 Graph (drilling depth VS drill bit life)

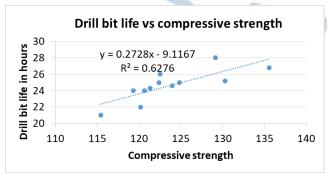


Fig-4 Graph (Compressive Strength VS drill bit life)

The figure 4 shows for regression analysis by taking the compressive strength in X-axis and drill bit life in hours in Y-axis. The linear equation obtained by the plotting the data in X-axis and Y-axis. The drill bit life data points were fitted against the best fit line by using a regression analysis. The goodness of fit value R^2 is 0.6276. The obtained results in the form of goodness of fit value also verify that there were a moderate correlation between the two variables.

3.2 ANOVA approach

One-way analysis of variance ("ANOVA") compares the means of two or more independent groups to determine if there is statistical evidence that the associated population means are significantly different. The one-way ANOVA is a parametric test. This test is also known as: One-Factor ANOVA, single factor.

One-way ANOVA is typically used to investigate the single independent variables or parameters. If any variations, or different levels of that factor have a measurable effect on a dependent variable

ANOVA is helpful for testing three or more variables. However, it results in fewer errors and is appropriate for a range of issues. ANOVA groups differences by comparing the means of each group and includes spreading out the variance into diverse sources.

3.3 Data normalization

The data shown in Table-1 have variability in their scale value. This variability will lead to incorrect or biased results in the study. Further to get the reliable results a normalization technique must be applied. The advantage of normalization technique is that it will reduce the error and will also help to determine the accurate results. The below Table-3 represents that normalized value of each variable in this study.

 Table 3 Normalized value for Drill bit hours, Drilling depth and Compressive strength

		And A			
	Drill bit life	Drilling Depth in	Compressive		
	in hours	feet (Actual)	strength (MPa)		
	0.43	0.44	0.26		
	0.47	0.56	0.29		
	0.43	0.5	0.19		
	0.71	0.78	0.35		
	0	0	0		
	0.57	0.78	0.47		
9	0.83	0.89	1		
		1	0.68		
	0.14	0.33	0.24		
	0.57	0.83	0.25		
	0.6	0.94	0.74		
	0.51	0.78	0.43		

Bapanapalli Tejendra, Rongala Suresh Swamy, Tanniru Raviteja, Palla Manikanta, Prakash S: **Reliability analysis of** percussive rotary drill bits in consideration with their failure modes

Table-4 ANOVA one way analysis

	Α	nova: S	Single Facto	or			
SUMMARY							
Groups	Count	Su	Averag	Variance			
		m	е				
Drill bit life in	12	6.2	0.5216	0.073415			
hours		6					
Drilling Depth	12	7.8	0.6525	0.086075			
in feet 's		3					
(Actual)							
Compressive	12	4.9	0.4083	0.076852			
strength (MPa)			3				
							1
ANOVA							
Source of	SS	df	MS	F	P-val	F	
Variation			100		ие	crit	
Between	0.3583	2	0.1791	2.274144	0.11	3.28	
Groups	16667		5		878	4918	
Within Groups	2.5997	33	0.0787				
	58333		8				
Total	2.9580	35					
	75						
	4						
	100						

The table 4 represents ANOVA Analysis for the data the Probability P= 0.119. Here the P value clearly shows that there is more statistical significant difference between the mean of three parameters because it greater than 0.05. It represents that there is direct relation between the compressive strength and drilling depth.

IV. CONCLUSION

Data is collected to investigate three key parameters at the drilling site to find the cause of drill bit failure in granite rock. Failure data collection was conducted for three specific types of failures: PRD drill bit failure due to high forming hardness, mechanical damage to the liner including loss of teeth and buttons, failure due to manufacturing defects and other factors, and failures due to compressive strength of rock. The data collection considers three other parameters as well as the failure mode.

Consider the life of the drill bit (in hours), the depth of the hole (in feet), and the compressive strength of the rock (When using a Schmidt hammer). The most appropriate Regression model for the data set was determined and the corresponding probability function was derived. The reliability of PRD bits was evaluated using an ANOVA approach showing acceptable results. In this study, a drill bit failure analysis was presented to understand the conditions of rotary percussion drilling and identify the factors that cause these failures.

The importance of this study will help engineers to understand different types of PRD drill bit failures in granite mines. It also helps evaluate the reliability of PRD drill bits in a specific location. Failure reasons can be used to upgrade PRD drill bits. This study will help determine the operators for improving penetration rates, reducing drilling costs and extending the life of PRD drill bits.

REFERENCES

[1] Beste, U., Lundvall, A., & Jacobson, S. (2004). *Micro-scratch evaluation of rock types—a* means to comprehend rock drill wear. Tribology International, 37(2), 203–210. doi:10.1016/s0301-679x(03)00038-0

- [2] Larsen-Basse, J. (1973). WEAR OF HARD-METALS IN ROCK DRILLING: A SURVEY OF THE LITERATURE. Powder Metallurgy, 16(31), 1–32. doi:10.1179/pom.1973.16.31.001
- [3] Beste, U., & Jacobson, S. (2008). A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons. Wear, 264(11-12), 1129–1141. doi:10.1016/j.wear.2007.01.030
- [4] ju, L., Liang-gang, L., wei, Y., &Xiaoliang, L.
 (2014). Working Performance Analysis and Optimization Design of Rotary Drilling Rig under on Hard Formation Conditions. Procedia Engineering, 73, 23–28. doi:10.1016/j.proeng.2014.06.165
- [5] Prakash, S., &Mukhopadhyay, A. K. (2018). Reliability analysis of tricone roller bits with tungsten carbide insert in blasthole drilling. International Journal of Mining, Reclamation and Environment,

1-18. doi:10.1080/17480930.2018.1530055

asuaise

49International Journal for Modern Trends in Science and Technology